Skip to main content

Convergence Time of Probabilistic Cellular Automata on the Torus

  • Chapter
  • First Online:
Book cover Probabilistic Cellular Automata

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 27))

Abstract

Many probabilistic cellular automata (PCA) exhibit a transition from an ergodic to a non-ergodic regime. Namely, if the free parameter is above a certain critical threshold, the process converges to a state that does not depend on the initial state (ergodicity), whereas if the free parameter is below the threshold, then the process converges to a state that depends on the initial state (non-ergodicity). If one considers the corresponding model on a finite space, such a transition is not observed (the process is always ergodic), nevertheless the convergence time is “small” when the corresponding process on infinite space is ergodic and “large” when the corresponding process on infinite space is non-ergodic. We analyse this correspondence for Percolation PCA, a class of probabilistic cellular automata which are closely related to oriented percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bagnoli, F., Rechtman, R.: Topological bifurcations in a model society of reasonable contrarians. Phys. Rev. E 88, 062914 (2013)

    Article  Google Scholar 

  2. Balister, P., Bollobás, B., Kozma, R.: Large deviations for mean field models of probabilistic cellular automata. Random Struct. Algorithms 29(3), 399–415 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balister, P., Bollobás, B., Johnson, J., Walters, M.: Random majority percolation. Random Struct. Algorithms 36(3), 315–340 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bennet, C., Grinstein, G.: Role of irreversibility in stabilizing complex and nonergodic behavior in locally interacting discrete systems. Phys. Rev. Lett. 55(7), 657–666 (1985)

    Article  Google Scholar 

  5. Berezner, S., Krutina, M., Malyshev, V.: Exponential convergence of Toom’s probabilistic cellular automata. J. Stat. Phys. 73(5–6), 927–944 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bigelis, S., Cirillo, E.N.M., Lebowitz, J.L., Speer, E.R.: Critical droplets in metastable states of probabilistic cellular automata. Phys. Rev E. 59, 3935–3941 (1999)

    Article  MathSciNet  Google Scholar 

  7. Chassaing, P., Mairesse, J.: A non ergodic probabilistic cellular automaton with a unique invariant measure. Stoch. Process. Appl. 121(11), 2474–2487 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Metastability for reversible probabilistic cellular automata with self-interaction. J. Stat. Phys. 132, 431–447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai Pra, P., Louis, P.-Y., Roelly, S.: Stationary measures and phase transition for a class of probabilistic cellular automata. ESAIM: Probab. Stat. 6, 89–104 (2002)

    Google Scholar 

  10. Dai Pra, P., Sartori, E., Tolotti, M.: Strategic interaction in trend-driven dynamics. J. Stat. Phys. 152(4), 724–741 (2013)

    Google Scholar 

  11. de Maere, A., Ponselet, L.: Exponential decay of correlations for strongly coupled Toom probabilistic cellular automata. J. Stat. Phys. 147(3), 634–652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Depoorter, J., Maes, C.: Stavskaya’s measure is weakly Gibbsian. Markov Process. Relat. Fields 12(4), 791–804 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Diakonova, M., MacKay, R.: Mathematical examples of space-time phases. Int. J. Bifurc. Chaos 21(8), 791–804 (2006)

    Google Scholar 

  14. Dobrushin, R.: Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity. Probl. Inf. Transm. 7(2), 1490164 (1071)

    Google Scholar 

  15. Durrett, R.: Oriented percolation in two dimensions. Ann. Probab. 12(4), 929–1227 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  17. Durrett, R., Schonmann, R.H., Tanaka, N.I.: The contact process on a finite set. III: the critical case. Ann. Probab. 17(4), 1303–1321 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fatès, N.: Asynchronism induces second-order phase transitions in elementary cellular automata. J. Cell. Autom. 4(1), 21–38 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Fatès, N.: A guided tour of asynchronous cellular automata. J. Cell. Autom. 9, 387–416 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Fatès, N., Morvan, M., Schabanel, N., Thierry, É.: Fully asynchronous behavior of double-quiescent elementary cellular automata. Theor. Comput. Sci. 362(1–3), 1–16 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fernández, R., Toom, A.: Non-Gibbsianness of the invariant measure of non-reversible cellular automata with totally asymmetric noise. Asthérisque 287, 71–87 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Gray, L.: The critical behaviour of a class of simple interacting systems - a few answers and a lot of questions. In: Durret, R. (ed.) Particle Systems, Random Media and Large Deviations. Contemporary Mathematics, vol. 41, pp. 149–160. AMS, Providence (1985). Asthérisque 287, 71–87 (2003)

    Google Scholar 

  23. Hinrichsen, H.: Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States. Lectures Held at the International Summer School on Problems in Statistical Physics XI. Leuven, Belgium (2005)

    Google Scholar 

  24. Kozma, R., Puljic, M., Balister, P., Bollobas, B., Freeman, W.: Phase transitions in the neuropercolation model for neural population with mixed local and non-local interactions. Biol. Cybern. 92, 367–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Landman, K.A., Binder, B.J., Newgreen, D.F.: Modeling development and disease in our “second” brain. Cell. Autom. Lect. Notes Comput. Sci. 7495, 405–414 (2012)

    Google Scholar 

  26. Lebowitz, J., Maes, C., Speer, E.: Statistical mechanics of probabillistic cellular automata. J. Stat. Phys. 59, 117–170 (1990)

    Article  MATH  Google Scholar 

  27. Liggett, T.M.: Interacting Particle Systems, 2nd edn. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  28. Louis, P.Y.: Ergodicity of PCA: equivalence between spatial and temporal mixing conditions. Electron. Commun. Probab. 9, 119–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mairesse, J., Marcovici, I.: Around probabilistic cellular automata. J. Theor. Comput. Sci. 559, 42–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Makowiec, D.: Modeling heart pacemaker tissue by a network of stochastic oscillatory cellular automata. In: Mauri, G., et al. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 138–149 (2013)

    Google Scholar 

  31. Manzo, F., Nardi, F.R., Olivieri, E., Scoppola, E.: On the essential features of metastability: tunnelling time and critical configurations. J. Stat. Phys. 115(1–2), 591–642 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mendoça, J.: Monte Carlo investigation of the critical behavior of Stavskaya’s probabilistic cellular automaton. Phys. Rev. E 83(1), 012102 (2011)

    Article  Google Scholar 

  33. Pearce, C.E.M., Fletcher, F.K.: Oriented site percolation phase transitions and probability bounds. J. Inequal. Pure Appl. Math. 6(5), 135 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Ponselet, L.: Phase transitions in probabilistic cellular automata. Ph.D. thesis (2013). arXiv:1312.3612

  35. Regnault, D.: Proof of a phase transition in probabilistic cellular automata. Developments in Language Theory, pp. 433–444 (2013)

    Google Scholar 

  36. Shnirman, M.: On the problem of ergodicity of a Markov chain with infinite sets of states. Probl. Kibern. 20, 115–124 (1968)

    Google Scholar 

  37. Stavskaja, O.N.: Gibbs invariant measures for Markov chains on finite lattices with local interaction. Mat. Sbornik 21, 395 (1976)

    Article  MATH  Google Scholar 

  38. Stavskaya, O., Piatetski-Shapiro, I.: On homogeneous nets of spontaneously active elements. Syst. Theory Res. 20, 75–88 (1971)

    Google Scholar 

  39. Taggi, L.: Critical probabilities and convergence time of percolation probabilistic cellular automata. J. Stat. Phys. 159(4), 853–892 (2015)

    Google Scholar 

  40. Toom, A.: A family of uniform nets of formal neurons. Sov. Math. Dokl. 9, 1338–1341 (1968)

    Google Scholar 

  41. Toom, A.: Stable and attractive trajectories in multicomponent systems. In: Dobrushin, R., Sinai, Y. (eds.) Multicomponent Random Systems. Advanced Probability Related Topics, vol. 6, pp. 549–575. Dekker, New York (1980)

    Google Scholar 

  42. Toom, A.: Cellular automata with errors: problems for students of probability. In: Snell, L. (ed.) Topics in Contemporary Probability and Its Applications. Probability and Stochastics Series. CRC Press, Boca Raton (1995)

    Google Scholar 

  43. Toom, A.: Contours, convex sets, and cellular automata. Notes for a Course Delivered at the 23th Colloquium of Brazilian Mathematics, Rio de Janeiro (2004)

    Google Scholar 

  44. Toom, A.: Ergodicity of cellular automata. Notes for a Course Delivered at Tartu University, Estonia (2013)

    Google Scholar 

  45. Toom, A., Vasilyev, N.B., Stavskaya, O.N., Mityushin, L.G., Kurdyumov, G.L., Pirogov, S.A.: Discrete local Markov systems. Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis. Manchester University Press, Manchester (1990)

    Google Scholar 

  46. Tomé, T., de Carvalho, K.C.: Stable oscillations of a predator-prey probabilistic cellular automaton: a mean-field approach. J. Phys. A.: Math. Theor. 40 (2007)

    Google Scholar 

  47. Varerstein, L., Leontovitch, A.: Invariant measures of certain Markov operators describing a homogeneous random medium. Probl. Inf. Transm. 6(1), 61–69 (1970)

    Google Scholar 

  48. Vasilyev, N., Petrovskaya, M., Piatetski-Shapiro, I.: Modelling of voting with random errors. Autom. Remote Control 10, 1632–1642 (Translated from Russian) (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Taggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taggi, L. (2018). Convergence Time of Probabilistic Cellular Automata on the Torus. In: Louis, PY., Nardi, F. (eds) Probabilistic Cellular Automata. Emergence, Complexity and Computation, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-65558-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65558-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65556-7

  • Online ISBN: 978-3-319-65558-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics