Advertisement

Epidemic Automaton and the Eden Model: Various Aspects of Robustness

  • Lucas GerinEmail author
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)

Abstract

The two-dimensional probabilistic cellular automaton Epidemic models the spread of an epidemic without recovering on graph. We discuss some well-known and less well-known properties of Epidemic on a finite grid and its analogous on the infinite square lattice: the Eden model. This survey is intended for non-probabilists and gives a detailed study of the robustness of a cellular automaton with respect to several sources of randomness.

Notes

Acknowledgements

I am grateful to two anonymous referees for their careful reading of the first version of this article.

References

  1. 1.
    Basdevant, A.L., Enriquez, N., Gerin, L., Gouéré, J.B.: The shape of large balls in highly supercritical percolation. Electron. J. Probab. 19, 1–14 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blair-Stahn, N.: First passage percolation and competition models (2010). arXiv:1005.0649
  3. 3.
    Couronné, O., Enriquez, N., Gerin, L.: Construction of a short path in high dimensional first-passage percolation. Electron. Commun. Probab. 16, 22–28 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cox, J., Durrett, R.: Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9(4), 583–603 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cox, J., Kesten, H.: On the continuity of the time constant of first-passage parcolation. J. Appl. Probab. 18, 809–819 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dhar, D.: First passage percolation in many dimensions. Phys. Lett. A 130, 308–310 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Eden, M.: A two-dimensional growth process. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. IV, pp. 223–239. University of California Press, Berkeley, Calif (1961)Google Scholar
  8. 8.
    Fatès, N., Gerin, L.: Examples of fast and slow convergence of 2d asynchronous cellular systems. J. Cell. Autom 4, 323–337 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fatès, N., Morvan, M., Schabanel, N., Thierry, E.: Fully asynchronous behavior of double-quiescent elementary cellular automata. Theoretical Comput. Sci. 362, 1–16 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Garet, O., Marchand, R.: Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster. ESAIM Probab. Stat. 8, 169–199 (2004) (electronic)Google Scholar
  11. 11.
    Gerin, L.: Aspects probabilistes des automates cellulaires, et d’autres problèmes en informatique théorique. (2008). Thèse de l’Université Nancy 1Google Scholar
  12. 12.
    Grimmett, G.: Percolation, vol. 321, 2nd edn. Springer, Berlin (1999)Google Scholar
  13. 13.
    Hammersley, J.M., Welsh, D.J.A.: First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In: Proceedings of the International Research Seminar Statistical Laboratory, University of California, Berkeley, Calif pp. 61–110. Springer, New York (1965)Google Scholar
  14. 14.
    Janson, S., Łuczak, T., Rucinski, A.: RanDom Graphs. In: Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)Google Scholar
  15. 15.
    Kesten, K.: Aspects of first passage percolation. In: École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Mathematics, vol. 1180, pp. 125–264. Springer, Berlin (1986)Google Scholar
  16. 16.
    Marchand, R.: Strict inequalities for the time constant in first passage percolation. Ann. Appl. Probab. 12, 1001–1038 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Richardson, D.: Random growth in a tessellation. In: Proceedings of the Cambridge Philosophical Society 74, 515–528 (1973)Google Scholar
  18. 18.
    Szpankowski, W., Rego, V.: Yet another application of a binomial recurrence order statistics. Computing 43, 401–410 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.CMAP, École PolytechniquePalaiseau CedexFrance

Personalised recommendations