Advertisement

Statistical Equilibrium in Deterministic Cellular Automata

  • Siamak TaatiEmail author
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)

Abstract

Some deterministic cellular automata have been observed to follow the pattern of the second law of thermodynamics: starting from a partially disordered state, the system evolves towards a state of equilibrium characterized by maximal disorder. This chapter is an exposition of this phenomenon and of a statistical scheme for its explanation. The formulation is in the same vein as Boltzmann’s ideas, but the simple combinatorial set-up offers clarification and hope for generic mathematically rigorous results. Probabilities represent frequencies and subjective interpretations are avoided.

Notes

Acknowledgements

Research supported by ERC Advanced Grant 267356-VARIS of Frank den Hollander. I would like to thank Aernout van Enter, Nazim Fatès and Ville Salo for helpful comments and discussions. This article is dedicated with love and appreciation to my teacher Javaad Mesgari.

References

  1. 1.
    Blanchard, F., Tisseur, P.: Some properties of cellular automata with equicontinuity points. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 36(5), 569–582 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ehrenfest, P., Ehrenfest, T.: The conceptual foundations of the statistical approach in mechanics. Cornell University Press (1959). Originally appeared in 1912 as volume IV, part 32 of the Encyklopädie der mathematischen WissenschaftenGoogle Scholar
  5. 5.
    Einsiedler, M.: Invariant subsets and invariant measures for irreducible actions on zero-dimensional groups. Bull. Lond. Math. Soc. 36(3), 321–331 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ferrari, P.A., Maass, A., Martínez, S., Ney, P.: Cesàro mean distribution of group automata starting from measures with summable decay. Ergod. Theory Dyn. Syst. 20(6), 1657–1670 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Formenti, E., Kari, J., Taati, S.: On the hierarchy of conservation laws in a cellular automaton. Nat. Comput. 10(4), 1275–1294 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gajardo, A., Kari, J., Moreira, A.: On time-symmetry in cellular automata. J. Comput. Syst. Sci. 78(4), 1115–1126 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Georgii, H.O.: Gibbs Measures and Phase Transitions. Walter de Gruyter, Berlin (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Georgii, H.O.: Probabilistic aspects of entropy. In: Greven, A., Keller, G., Warnecke, G. (eds.) Entropy, pp. 37–54. Princeton University Press, Princeton (2003)Google Scholar
  11. 11.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Herrmann, H.J.: Fast algorithm for the simulation of Ising models. J. Stat. Phys. 45(1/2), 145–151 (1986)CrossRefGoogle Scholar
  13. 13.
    Host, B., Maass, A., Martínez, S.: Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discret. Contin. Dyn. Syst. — Ser. A 9(6), 1423–1446 (2003)Google Scholar
  14. 14.
    Israel, R.B.: Convexity in the Theory of Lattice Gases. Princeton University Press, Princeton (1979)zbMATHGoogle Scholar
  15. 15.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Johnson, A., Rudolph, D.J.: Convergence under \(\times _q\) of \(\times _p\) invariant measures on the circle. Adv. Math. 115(1), 117–140 (1995)Google Scholar
  17. 17.
    Kac, M.: Probability and Related Topics in Physical Sciences. Interscience Publishers, New York (1959)zbMATHGoogle Scholar
  18. 18.
    Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334, 3–33 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kari, J., Taati, S.: Statistical mechanics of surjective cellular automata. J. Stat. Phys. 160(5), 1198–1243 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Keller, G.: Equilibrium States in Ergodic Theory. Cambridge University Press, Cambridge (1998)Google Scholar
  21. 21.
    Kůrka, P.: Topological and symbolic dynamics. Cours Spécialisés, vol. 11. Société Mathématique de France (2003)Google Scholar
  22. 22.
    Lanford III, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38, pp. 1–111 (1975)Google Scholar
  23. 23.
    Lebowitz, J.L.: Statistical mechanics: a selective review of two central issues. Rev. Mod. Phys. 71(2) (1999)Google Scholar
  24. 24.
    Lind, D.A.: Applications of ergodic theory and sofic systems to cellular automata. Phys. D: Nonlinear Phenom. 10(1–2) (1984)Google Scholar
  25. 25.
    Maass, A., Martínez, S.: Time averages for some classes of expansive one-dimensional cellular automata. Cellular Automata and Complex Systems, Nonlinear Phenomena and Complex Systems, vol. 3, pp. 37–54. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  26. 26.
    Miyamoto, M.: An equilibrium state for a one-dimensional life game. J. Math. Kyoto Univ. 19, 525–540 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Oxtoby, J.C.: Ergodic sets. Bull. Am. Math. Soc. 58(2), 116–136 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Oxtoby, J.C.: On two theorems of Parthasarathy and Kakutani concerning the shift transformation. In: Wright, F.B. (ed.) Ergodic Theory, pp. 203–215. Academic Press, New York (1963)Google Scholar
  29. 29.
    Pivato, M., Yassawi, R.: Limit measures for affine cellular automata. Ergod. Theory Dyn. Syst. 22, 1269–1287 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pivato, M., Yassawi, R.: Limit measures for affine cellular automata II. Ergod. Theory Dyn. Syst. 24, 1961–1980 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ruelle, D.: Thermodynamic Formalism, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  32. 32.
    Shereshevsky, M.A.: Ergodic properties of certain surjective cellular automata. Monatshefte für Mathematik 114(3–4), 305–316 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Shereshevsky, M.A.: K-property of permutative cellular automata. Indag. Math. 8(3), 411–416 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Takesue, S.: Reversible cellular automata and statistical mechanics. Phys. Rev. Lett. 59(22), 2499–2502 (1987)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)zbMATHGoogle Scholar
  36. 36.
    Vichniac, G.Y.: Simulating physics with cellular automata. Phys. D 10, 96–116 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)CrossRefzbMATHGoogle Scholar
  38. 38.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wolfram, S.: Random sequence generation by cellular automata. Adv. Appl. Math. 7, 123–169 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations