Advertisement

Overview: PCA Models and Issues

  • Roberto Fernández
  • Pierre-Yves LouisEmail author
  • Francesca R. Nardi
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)

Abstract

Probabilistic cellular automata (PCA) are interacting discrete stochastic dynamical systems used as a modeling tool for a wide range of natural and societal phenomena. Their key features are: (i) a stochastic component that distinguishes them from the well-known cellular automata (CA) algorithms and (ii) an underlying parallelism that sets them apart from purely asynchronous simulation dynamics in statistical mechanics, such as interacting particle systems and Glauber dynamics. On the applied side, these features make PCA an attractive computational framework for high-performance computing, distributed computing, and simulation. Indeed, PCA have been put to good use as part of multiscale simulation frameworks for studying natural systems or large interconnected network structures. On the mathematical side, PCA have a rich mathematical theory that leads to a better understanding of the role of randomness and synchronicity in the evolution of large systems. This book is an attempt to present a wide panorama of the current status of PCA theory and applications. Contributions cover important issues and applications in probability, statistical mechanics, computer science, natural sciences, and dynamical systems. This initial chapter is intended both as a guide and an introduction to the issues discussed in the book. The chapter starts with a general overview of PCA modeling, followed by a presentation of conspicuous applications in different contexts. It closes with a discussion of the links between approaches and perspectives for future developments.

Notes

Acknowledgements

The authors of this overview chapter thank the full editorial board for their help to set up this book. [We thank, in particular, R. Merks and N. Fatés for their comments and suggestions] about this chapter.

References

  1. 1.
    Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435(June), 759–764 (2005)CrossRefGoogle Scholar
  2. 2.
    Adachi, S., Peper, F., Lee, J.: Computation by asynchronously updating cellular automata. J. Stat. Phys. 114(January), 261–289 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alber, M.S., Kiskowski, M.A., Glazier, J.A., Jiang, Y.I.: On cellular automaton approaches to modeling biological cells. In: J. Rosenthal, D.S. Gilliam (eds.) Mathematical Systems Theory in Biology, Communications, Computation, and Finance. The IMA Volumes in Mathematics and its Applications. The IMA Volumes in Mathematics and its Applications, vol. 7105, p. 12. Springer, New York (2002)Google Scholar
  4. 4.
    Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.): Computing with Probabilistic Cellular Automata. Lecture Notes in Computer Science, vol. 1. Springer, Berlin (2009)Google Scholar
  5. 5.
    Almeida, R.M., Macau, E.E.N.: Stochastic cellular automata model for wildland fire spread dynamics. J. Phys. Conf. Ser. 285(1), 12,038 (2011)Google Scholar
  6. 6.
    Arrighi, P., Schabanel, N., Theyssier, G.: Stochastic cellular automata: correlations, decidability and simulations. Fundamenta Informaticae 126(2–3), 121–156 (2013)Google Scholar
  7. 7.
    Aubert, M., Badoual, M., Féreol, S., Christov, C., Grammaticos, B.: A cellular automaton model for the migration of glioma cells. Phys. Biol. 3(2), 93 (2006)CrossRefGoogle Scholar
  8. 8.
    Bahr, D., Passerini, E.: Statistical Mechanics of Collective Behavior: Macro-Sociology. J. Math. Sociol. 23(1), 29–49 (1998)zbMATHCrossRefGoogle Scholar
  9. 9.
    Balister, P., Bollobás, B., Kozma, R.: Large deviations for mean field models of probabilistic cellular automata. Random Struct. Algorithms 29(3), 399–415 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bandini, S., Manzoni, S., Vizzari, G.: Agent Based Modeling and Simulation. In: Computational Complexity. Theory, Techniques, and Applications, pp. 105–117 (2012)Google Scholar
  11. 11.
    Bandini, S., Mauri, G., Serra, R.: Cellular automata: from a theoretical parallel computational model to its application to complex systems. Parallel Comput. 27, 539–553 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bandman, O.: Simulating spatial dynamics by probabilistic cellular automata. Lect. Notes Comput. Sci. 2493, 10–19 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bartolozzi, M., Thomas, A.W.: Stochastic cellular automata model for stock market dynamics. Phys. Rev. E 046112(4), 1–17 (2004)Google Scholar
  15. 15.
    Berezner, S.A., Krutina, M., Malyshev, V.A.: Exponential convergence of Toom’s probabilistic cellular automata. J. Stat. Phys. 73(5–6), 927–944 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Berry, H., Fatès, N.: Robustness of the critical behaviour in the stochastic Greenberg–Hastings cellular automaton model. Int. J. Unconv. Comput. 7(1), 65–85 (2011)Google Scholar
  17. 17.
    Birkner, M., Depperschmidt, A.: Survival and complete convergence for a spatial branching system with local regulation. Ann. Appl. Probab. 17(5/6), 1777–1807 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Blok, H.J., Bergersen, B.: Synchronous versus asynchronous updating in the game of Life. Phys. Rev. E 59(4), 1–16 (1999)CrossRefGoogle Scholar
  19. 19.
    Boccara, N., Cheong, K.: Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. J. Phys. A 26, 3707–3717 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bouchaud, J.P.: Crises and collective socio-economic phenomena: simple models and challenges. J. Stat. Phys. 151(3–4), 567–606 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Bovier, A., den Hollander, F.: Metastability, Grundlehren der mathematischen Wissenschaften, vol. 351. Springer International Publishing, Cham (2015)Google Scholar
  22. 22.
    Bovier, A., den Hollander, F., Spitoni, C.: Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures. Ann. Probab. 38(2), 661–713 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bovier, A., Manzo, F.: Metastability in Glauber dynamics in the low-temperature limit: beyond exponential asymptotics. J. Stat. Phys. 107(3–4), 757–779 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Bramson, M., Neuhauser, C.: Survival of one-dimensional cellular automata under random perturbations. Ann. Probab. 22(1), 244–263 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Bricmont, J., Bosch, H.V.D.: Intermediate model between majority voter PCA and its mean field model. J. Stat. Phys. 158(5), 1090–1099 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Burkhead, E.G., Hawkins, J.M., Molinek, D.K.: A dynamical study of a cellular automata model of the spread of HIV in a lymph node. Bull. Math. Biol. 71(1), 25–74 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Bušić, A., Fatès, N., Mairesse, J., Marcovici, I.: Density classification on infinite lattices and trees. Electron. J. Probab. 18, 109–120 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Bušić, A., Mairesse, J., Marcovici, I.I.: Probabilistic cellular automata, invariant measures, and perfect sampling. Adv. Appl. Probab. 980(July 2012), 960–980 (2011)Google Scholar
  29. 29.
    Carvalho, K.C.D., Tomé, T.: Anisotropic probabilistic cellular automaton for a predator-prey system. Braz. J. Phys. 37(2a), 466–471 (2007)CrossRefGoogle Scholar
  30. 30.
    Casse, J.: Probabilistic cellular automata with general alphabets letting a Markov chain invariant. Adv. Appl. Probab. 48(2) (2016)Google Scholar
  31. 31.
    Casse, J., Marckert, J.F.: Markovianity of the invariant distribution of probabilistic cellular automata on the line. Stochastic Process. Appl. 1(9), 1–29 (2014)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Cerf, R., Manzo, F.: Nucleation and growth for the Ising model in d dimensions at very low temperatures. Ann. Probab. 41(6), 3697–3785 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Cervelle, J.: Constructing continuous systems from discrete cellular automata. In: P. Bonizzoni, V. Brattka, B. Loewe (eds.) The Nature of Computation. Logic, Algorithms, Applications. Lecture Notes in Computer Science, vol. 7921, pp. 55–64. Springer, Berlin (2013)Google Scholar
  34. 34.
    Cervelle, J., Formenti, E.: Algorithmic Complexity and Cellular Automata. Computational Complexity. Theory, Techniques, and Applications pp. 132–146 (2012)Google Scholar
  35. 35.
    Chassaing, P., Gerin, L.: Asynchronous cellular automata and Brownian motion. In: 2007 Conference on Analysis of Algorithms, Discrete Math. Theor. Comput. Sci. Proc., AH, pp. 385–401. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2007)Google Scholar
  36. 36.
    Chassaing, P., Mairesse, J.: A non-ergodic probabilistic cellular automaton with a unique invariant measure. Stochastic Process. Appl. 121(11), 2474–2487 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Comput. Compl. Theory Tech. Appl. 122, 407–433 (1998)Google Scholar
  38. 38.
    Chopard, B., Dupuis, A., Masselot, A., Luthi, P.: Cellular automata and lattice boltzmann techniques: an approach to model and simulate complex systems. Adv. Complex Syst. 05(02n03), 103–246 (2002)Google Scholar
  39. 39.
    Chopard, B., Ouared, R., Deutsch, A., Hatzikirou, H., Wolf gladrow, D.: Lattice-gas cellular automaton models for biology: from fluids to cells. Acta biotheoretica 58(4), 329–340 (2010)Google Scholar
  40. 40.
    Cirillo, E.N.M., Nardi, F.R.: Metastability for a stochastic dynamics with a parallel heat bath updating rule. J. Stat. Phys. 110(1–2), 183–217 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Cirillo, E.N.M., Nardi, F.R.: Relaxation height in energy landscapes: an application to multiple metastable states. J. Stat. Phys. 150(6), 1080–1114 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Cirillo, E.N.M., Nardi, F.R., Polosa, A.D.: Magnetic order in the Ising model with parallel dynamics. Phys. Rev. E 64, 057,103 (2001)Google Scholar
  43. 43.
    Cirillo, E.N.M., Nardi, F.R., Sohier, J.: Metastability for general dynamics with rare transitions: escape time and critical configurations. J. Stat. Phys. 161(2), 365–403 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Competitive nucleation in reversible probabilistic cellular automata. Phys. Rev. E 78 (2008)Google Scholar
  45. 45.
    Cirillo, E.N.M., Nardi, F.R., Spitoni, C.: Metastability for reversible probabilistic cellular automata with self-interaction. J. Stat. Phys. 132(3), 431–471 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Coletti, C.F., Tisseur, P.: Invariant measures and decay of correlations for a class of ergodic probabilistic cellular automata. J. Stat. Phys. 140(1), 103–121 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Cook, M.: Universality in Elementary Cellular Automata. Complex Syst. 15, 1–40 (2004)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Cox, J.T., Durrett, R.: Limit theorems for the spread of epidemics and forest fires. Stochastic Process. Appl. 30, 171–191 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Dai Pra, P., Louis, P.Y., Roelly, S.: Stationary measures and phase transition for a class of probabilistic cellular automata. ESAIM Probab. Stat. 6, 89–104 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Dai Pra, P., Runggaldier, W., Sartori, E., Tolotti, M.: Large portfolio losses; a dynamic contagion model. Ann. Appl. Probab. 19(1), 1–38 (2007)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Dai Pra, P., Scoppola, B., Scoppola, E.: Sampling from a Gibbs measure with pair interaction by means of PCA. J. Stat. Phys. 149(4), 722–737 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Dai Pra, P., Scoppola, B., Scoppola, E.: Fast mixing for the low temperature 2d Ising model through irreversible parallel dynamics. J. Stat. Phys. 159(1), 1–20 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Dawson, D.A.: Synchronous and asynchronous reversible Markov systems. Canad. Math. Bull. 17(5), 633–649 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Dawson, D.A.: Stable states of probabilistic cellular automata. Inf. Control 34(2), 93–106 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    De Masi, A., Esposito, R., Lebowitz, J.L., Presutti, E.: Hydrodynamics of stochastic cellular automata. Commun. Math. Phys. 125(1), 127–145 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Delorme, M., Mazoyer, J. (eds.): Cellular Automata: A Parallel Model. Springer, Berlin (1999)Google Scholar
  57. 57.
    Demongeot, J., Goles, E., Tchuente, M. (eds.): Dynamical Systems and Cellular Automata. Academic Press, New York (1985)Google Scholar
  58. 58.
    Dennunzio, A., Formenti, E., Fatès, N.: Foreword: cellular automata and applications. Nat. Comput. 12(3), 305–305 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Depoorter, J., Maes, C.: Stavskaya’s measure is weakly Gibbsian. Markov Process. Related Fields 12(4), 791–804 (2006)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Deroulers, C., Aubert, M., Badoual, M., Grammaticos, B.: Modeling tumor cell migration: from microscopic to macroscopic models. Phys. Rev. E 79(3), 1–14 (2009)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Derrida, B.: Dynamical phase transitions in spin models and automata. In: Fundamental Problems in Statistical Mechanics VII (Altenberg, 1989), pp. 273–309. North-Holland, Amsterdam (1990)Google Scholar
  62. 62.
    Deuschel, J.D., Greven, A. (eds.): Interacting Stochastic Systems. Springer, Berlin (2005)Google Scholar
  63. 63.
    Deutsch, A., Dormann, S., Maini, P.K.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Modeling and Simulation in Science Engineering and Technology. Birkhäuser (2005)Google Scholar
  64. 64.
    Dhar, D.: Equivalence of the two-dimensional directed-site animal problem to Baxter’s hard-square lattice-gas model. Phys. Rev. Lett. 49(14), 959–962 (1982)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Diakonova, M., Mackay, R.S.: Mathematical examples of space-time phases. Int. J. Bifurc. Chaos 21(08), 1–8 (2011)CrossRefGoogle Scholar
  66. 66.
    Dobrushin, R.L.: Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity. Problemy Peredači Informacii 7(2), 70–87 (1971)MathSciNetGoogle Scholar
  67. 67.
    Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53(4), 311–314 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Dommers, S., Giardinà, C., van der Hofstad, R.: Ising models on power-law random graphs. J. Stat. Phys. 141(4), 638–660 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Drossel, B., Clar, S., Schwabl, F.: Exact results for the one-dimensional self-organized critical forest-fire model. Phys. Rev. Lett. 71(23), 3739 (1993)CrossRefGoogle Scholar
  70. 70.
    Drossel, B., Schwabl, F.: Self-organized critical forest-fire model. Phys. Rev. Lett. 69(11), 1629–1632 (1992)CrossRefGoogle Scholar
  71. 71.
    Durrett, R.: Oriented percolation in two dimension. Ann. Probab. 12(4), 929–1227 (1984)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Durrett, R.: Stochastic spatial models. SIAM Rev. 41(4), 677–718 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Durrett, R., Levin, S.A.: Stochastic spatial models: a user’s guide to ecological applications. Philos. Trans. B 343, 329–350 (1994)CrossRefGoogle Scholar
  74. 74.
    Earl, D.J., Deem, M.W.: Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. PCCP 7(23), 3910–3916 (2005)CrossRefGoogle Scholar
  75. 75.
    Elsayed, W.M., El Bassiouny, A.H., Radwan, E.F.: Applying inhomogeneous probabilistic cellular automata rules on epidemic model. Int. J. Adv. Res. Artif. Intell. 2(4) (2013)Google Scholar
  76. 76.
    Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460(7256), 685–686 (2009)CrossRefGoogle Scholar
  77. 77.
    Fatès, N.: FiatLux: a simulation program in Java for cellular automata and discrete dynamical systems. http://fiatlux.loria.fr (Cecill licence) APP IDDN.FR.001.300004.000.S.P.2013.000.10000
  78. 78.
    Fatès, N.: Solving the decentralised gathering problem with a reaction-diffusion-chemotaxis scheme. Swarm Intell. 4(2), 91–115 (2010)CrossRefGoogle Scholar
  79. 79.
    Fatès, N.: A guided tour of asynchronous cellular automata. Lect. Notes Comput. Sci. 8155, 15–30 (2013)zbMATHCrossRefGoogle Scholar
  80. 80.
    Fatès, N.: Stochastic cellular automata solutions to the density classification problem. Theory Comput. Syst. 53(2), 223–242 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Fatès, N.: Aesthetics and Randomness in Cellular Automata. pp. 137–139. Springer International Publishing, Berlin (2016)Google Scholar
  82. 82.
    Fatès, N., Gerin, L.: Examples of fast and slow convergence of 2D asynchronous cellular systems. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) Cellular Automata. Lecture Notes in Computer Science, vol. 5191, pp. 184–191. Springer, Berlin (2008)CrossRefGoogle Scholar
  83. 83.
    Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst. 16(1), 1–27 (2005)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Fernández, R., Toom, A.: Non-gibbsianness of the invariant measure of non-reversible cellular automata with totally asymmetric noise. Astérisque 287, 71–87 (2003)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Ferrari, P.: Ergodicity for a class of probabilistic cellular automata. Rev. Mat. Apl. 12(2), 93–102 (1991)MathSciNetzbMATHGoogle Scholar
  86. 86.
    Ferrari, P., Frigessi, A., Schonmann, R.H.: Convergence of some partially parallel gibbs samplers with annealing. Ann. Appl. Probab. 3(1), 137–153 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Soares Filho, B.S., Coutinho Cerqueira, G., Lopes Pennachin, C.: Dinamica–a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Model. 154(3), 217–235 (2002)CrossRefGoogle Scholar
  88. 88.
    Fisch, R., Gravner, J., Griffeath, D.: Metastability in the Greenberg-Hastings model. Ann. Appl. Probab. 3(4), 935–967 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Föllmer, H.: Tail structure of Markov chains on infinite product spaces. Z. Wahrsch. Verw. Gebiete 285(3), 273–285 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Fukś, H.: Non-deterministic density classification with diffusive probabilistic cellular automata. Phys. Rev. E 66(6), 1–4 (2002)CrossRefGoogle Scholar
  91. 91.
    Fukś, H., Lawniczak, A.T.: Individual-based lattice model for spatial spread of epidemics. Discret. Dyn. Nat. Soc. 6(3), 191–200 (2001)zbMATHCrossRefGoogle Scholar
  92. 92.
    Gács, P.: Reliable computation with cellular automata. J. Comput. Syst. Sci. 32, 15–78 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Gács, P.: Reliable cellular automata with self-organization. J. Stat. Phys. 103(1–2), 45–267 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Galves, A., Löcherbach, E.: Modeling networks of spiking neurons as interacting processes with memory of variable length. Journal de la Société Française de Statistique 157(1), 17–32 (2016)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Ganguly, N., Sikdar, B.K., Deutsch, A., Canright, G., Chaudhuri, P.P.: A survey on cellular automata. Engineering pp. 1–30 (2003)Google Scholar
  96. 96.
    Garijo, N., Manzano, R., Osta, R., Perez, M.A.: Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells. J. Theor. Biol. 314, 1–9 (2012)MathSciNetCrossRefGoogle Scholar
  97. 97.
    Garzon, M.: Models of Massive Paralellism: Analysis of Cellular Automata and Neural Networks. Springer, Berlin (1985)Google Scholar
  98. 98.
    Gaudillière, A., den Hollander, F., Nardi, F., Olivieri, E., Scoppola, E.: Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics. Stochastic Process. Appl. 119(3), 737–774 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Gaudillière, A., Nardi, F.R.: An upper bound for front propagation velocities inside moving populations. Braz. J. Probab. Stat. 24(2), 256–278 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Gaudillière, A., Olivieri, E., Scoppola, E.: Nucleation pattern at low temperature for local Kawasaki dynamics in two dimensions. Markov Process. Related Fields 11, 553–628 (2005)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Gaudillière, A., Scoppola, B., Scoppola, E., Viale, M.: Phase transitions for the cavity approach to the clique problem on random graphs. J. Stat. Phys. 145(5), 1127–1155 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Georges, A., Le Doussal, P.: From equilibrium spin models to probabilistic cellular automata. J. Stat. Phys. 54(3–4), 1011–1064 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Giesecke, K., Weber, S.: Credit contagion and aggregate losses. J. Econom. Dyn. Control 30(5), 741–767 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Goldstein, S., Kuik, R., Lebowitz, J.L., Maes, C.: From PCA to equilibrium systems and back. Commun. Math. Phys. 125(1), 71–79 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Goltsev, A.V., de Abreu, F.V., Dorogovtsev, S.N., Mendes, J.F.F.: Stochastic cellular automata model of neural networks. Phys. Rev. E 81(6), 61,921 (2010)Google Scholar
  106. 106.
    Grassberger, P.: On a self-organized critical forest-fire model. J. Phys. A 26(9), 2081 (1993)CrossRefGoogle Scholar
  107. 107.
    Grassberger, P.: Critical behaviour of the Drossel-Schwabl forest fire model. New J. Phys. 4(1), 17 (2002)CrossRefGoogle Scholar
  108. 108.
    Gray, L.F.: A reader’s guide to Gacs’s “positive rates” paper. J. Stat. Phys 103(1–2), 1–44 (2001)zbMATHCrossRefGoogle Scholar
  109. 109.
    Griffeath, D.: Self-organization of random cellular automata: four snapshots. In: G.R. Grimmett (ed.) Probability and Phase Transition, NATO ASI Series, vol. 420, pp. 49–67. Springer, Berlin (1994)Google Scholar
  110. 110.
    Grimmett, G.: Percolation. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
  111. 111.
    Grinstein, G.: Can complex structures be generically stable in a noisy world? IBM J. Res. Develop. 48(1), 5–12 (2004)CrossRefGoogle Scholar
  112. 112.
    Grinstein, G., Jayaprakash, C., He, Y.: Statistical mechanics of probabilistic cellular automata. Phys. Rev. Lett. 55(23), 2527–2530 (1985)MathSciNetCrossRefGoogle Scholar
  113. 113.
    Habel, L., Schreckenberg, M.: Cellular Automata: 11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, Krakow, Poland, September 22–25, 2014. Proceedings. In: J. Was, G.C. Sirakoulis, S. Bandini (eds.) Lecture Notes in Computer Science, vol. 8751, pp. 620–629 (2014)Google Scholar
  114. 114.
    Hatzikirou, H., Deutsch, A.: Cellular automata as microscopic models of cell migration in heterogeneous environments. Curr. Top. Dev. Biol. 81(07), 401–434 (2008)CrossRefGoogle Scholar
  115. 115.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3(4), 320–375 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Hoekstra, A., Kroc, J., Sloot, P.: Introduction to modeling of complex systems using cellular automata. In: Simulating Complex Systems by Cellular Automata, pp. 1–16 (2010)Google Scholar
  117. 117.
    Hogeweg, P.: Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 27(1), 81–100 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    den Hollander, F., Nardi, F., Olivieri, E., Scoppola, E.: Droplet growth for three-dimensional Kawasaki dynamics. Probab. Theory Related Fields 125(2), 153–194 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    den Hollander, F., Olivieri, E., Scoppola, E.: Metastability and nucleation for conservative dynamics. J. Math. Phys. 41(3), 1424–1498 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Holroyd, A.E., Marcovici, I., Martin, J.B.: Percolation games, probabilistic cellular automata, and the hard-core model. arXiv:1503.05614 [math] (2015)
  121. 121.
    Horst, U.: Stochastic CAcade, credit contagion, and large portfolio losses. J. Econ. Behav. Organ. 63(1), 25–54 (2007)CrossRefGoogle Scholar
  122. 122.
    Ichise, Y., Ishida, Y.: Reverse engineering of spatial patterns in cellular automata. Artif. Life Robot. 13(1), 172–175 (2008)CrossRefGoogle Scholar
  123. 123.
    Ignatyuk, I.A., Malyshev, V.A.: Processes with local interaction, and communication networks. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 25(1), 65–77 (1989)Google Scholar
  124. 124.
    Ilachinski, A.: Cellular Automata; A Discrete Universe. World Scientific, Singapore (2001)zbMATHCrossRefGoogle Scholar
  125. 125.
    Jahnel, B., Külske, C.: A class of non-ergodic probabilistic cellular automata with unique invariant measure and quasi-periodic orbit. Stoch. Process. Appl. 125(6), 2427–2450 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Jiang, Y.: Understanding a killer: a predictive model for tumor development. Contemp. Math. 410, 173–185 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    Just, W.: Toom’s model with Glauber rates: an exact solution. J. Stat. Phys. 139(6), 985–990 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecol. Model. 99, 87–97 (1997)CrossRefGoogle Scholar
  129. 129.
    Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334(1–3), 3–33 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    Kari, J., Taati, S.: Conservation laws and invariant measures in surjective cellular automata. In: AUTOMATA-2011, 2, pp. 113–122. DMTCS Proceedings (2012)Google Scholar
  131. 131.
    Kari, J.J.: Basic concepts of cellular automata. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 3–24. Springer, Berlin (2012)CrossRefGoogle Scholar
  132. 132.
    Katori, M., Konno, N., Tanemura, H.: Limit theorems for the nonattractive Domany-Kinzel model. Ann. Probab. 30(2), 933–947 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Katori, M., Tsukahara, H.: Two-neighbour stochastic cellular automata and their planar lattice duals. J. Phys. A 28(14), 3935 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Kesten, H.: What is Percolation? Notices of the AMS (2006)Google Scholar
  135. 135.
    Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2(5), 348–351 (2006)CrossRefGoogle Scholar
  136. 136.
    Kinzel, W.: Phase transitions of cellular automata. Zeitschrift für Physik B Condensed Matter 58(3), 229–244 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Kozlov, O., Vasilyev, N.: Reversible Markov chains with local interaction. Multicompon. Random Syst. 6, 451–469 (1980)MathSciNetzbMATHGoogle Scholar
  138. 138.
    Kozma, R., Puljic, M., Balister, P., Bollobas, B., Freeman, W.J.: Neuropercolation: a random cellular automata approach to spatio-temporal neurodynamics. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) Lecture Notes in Computer Science: Cellular Automata, Proceedings, vol. 3305, pp. 435–443. Springer, Berlin (2004)Google Scholar
  139. 139.
    Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality, and random matrices. J. Phys. 43(40) (2010)Google Scholar
  140. 140.
    Künsch, H.: Nonreversible stationary measures for infinite interacting particle systems. Z. Wahrsch. Verw. Gebiete 66(3), 407–424 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    Künsch, H.: Time reversal and stationary Gibbs measures. Stoch. Process. Appl. 17(1), 159–166 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    Kurka, P.: Topological dynamics of one-dimensional cellular automata. Technical reportGoogle Scholar
  143. 143.
    Lancia, C., Scoppola, B.: Equilibrium and Non-equilibrium ising models by means of PCA. J. Stat. Phys. 153(4), 641–653 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Le Ny, A.: (Non-) Gibbs Description of Mean-field Models, vol. 60, chap. 21, pp. 463–480. Birkhäuser (2008)Google Scholar
  145. 145.
    Lebowitz, J.L.: Emergent Phenomena. Physik J. 6(8/9) (2007)Google Scholar
  146. 146.
    Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59(1–2), 117–170 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Lebowitz, J.L., Orlandi, E., Presutti, E.: Convergence of stochastic cellular automation to Burgers’ equation: fluctuations and stability. Physica D: Nonlinear Phenomena 33(1–3), 165–188 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    Levin, S.A., Durrett, R.: From individuals to epidemics. Philos. Trans. B 351(1347), 1615–1621 (1996)CrossRefGoogle Scholar
  149. 149.
    Liggett, T.M.: Stochastic models of interacting systems. Ann. Probab. 25(1), 1–29 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Liggett, T.M.: Stochastic models for large interacting systems and related correlation inequalities. Proc. Natl. Acad. Sci. U.S.A. 107, 16413–16419 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    Louis, P.-Y.: Automates Cellulaires Probabilistes: mesures stationnaires, mesures de Gibbs associées et ergodicité. Ph.D. thesis, Politecnico di Milano, Italy and Université Lille 1, France (2002)Google Scholar
  152. 152.
    Louis, P.-Y.: Ergodicity of PCA: equivalence between spatial and temporal mixing conditions. Electron. Commun. Probab. 9, 119–131 (2004)Google Scholar
  153. 153.
    de Maere, A., Ponselet, L.: Exponential decay of correlations for strongly coupled toom probabilistic cellular automata. J. Stat. Phys. 147(3), 634–652 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    Maes, C., Shlosman, S.B.: Ergodicity of probabilistic cellular automata: a constructive criterion. Commun. Math. Phys. 135(2), 233–251 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    Mairesse, J., Marcovici, I.: Around probabilistic cellular automata. Theor. Comput, Sci. (2014)Google Scholar
  156. 156.
    Mairesse, J., Marcovici, I.: Probabilistic cellular automata and random fields with i.i.d. directions. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 50(2), 455–475 (2014)Google Scholar
  157. 157.
    Manchanda, K., Yadav, A.C., Ramaswamy, R.: Scaling behavior in probabilistic neuronal cellular automata. Phys. Rev. E 87(1), 12,704 (2013)Google Scholar
  158. 158.
    Manneville, P., Boccara, N., Vichniac, G., Bidaux, R.: Cellular Automata and the Modeling of Complex Physical Systems. Springer, Berlin (1989)Google Scholar
  159. 159.
    Margolus, N., Toffoli, T.: Cellular Automata Machines: A New Environment for Modeling, vol. 1. MIT Press (1987)Google Scholar
  160. 160.
    Martin, O.C., Monasson, R., Zecchina, R.: Statistical mechanics methods and phase transitions in optimization problems. Theor. Comput. Sci. 265(1–2), 3–67 (2001)Google Scholar
  161. 161.
    Martínez, G.J., Seck-Tuoh Mora, J.C., Zenil, H.: Wolfram’s classification and computation in cellular automata classes III and IV. In: Zenil, H. (ed.) Irreducibility and Computational Equivalence, vol. 2, pp. 237–259. Springer, Berlin (2013)CrossRefGoogle Scholar
  162. 162.
    Bousquet Mélou, M.: New enumerative results on two-dimensional directed animals. Discret. Math. 180(1–3), 73–106 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Mendonça, J.: Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density. Phys. Rev. E 83(3) (2011)Google Scholar
  164. 164.
    Mendonça, J.R.G.: A Monte Carlo investigation of the critical behavior of Stavskaya’s probabilistic cellular automaton. Phys. Rev. E 83(1), 18–21 (2011)CrossRefGoogle Scholar
  165. 165.
    Mendonça, J.R.G.: The inactive-active phase transition in the noisy additive (exclusive-or) probabilistic cellular automaton. Int. J. Mod. Phys. C 27(2) (2016)Google Scholar
  166. 166.
    de Menibus, B.H., Sablik, M.: Self-organization in cellular automata: a particle-based approach. In: G. Mauri, A. Leporati (eds.) Developments in Language Theory. Lecture Notes in Computer Sciences, vol. 6795, pp. 251–263. Springer, Berlin (2011)Google Scholar
  167. 167.
    Merks, R.M.H., Perryn, E.D., Shirinifard, A., Glazier, J.a.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4(9), e1000, 163 (2008)Google Scholar
  168. 168.
    Mikler, A.R., Venkatachalam, S., Abbas, K.: Modeling infectious diseases using global stochastic cellular automata. J. Biol. Syst. 13(4), 421–439 (2005)zbMATHCrossRefGoogle Scholar
  169. 169.
    Molofsky, J., Bever, J.D.: A New Kind of Ecology? BioScience 54(5), 440 (2004)CrossRefGoogle Scholar
  170. 170.
    Monetti, R.A., Albano, E.V.: On the emergence of large-scale complex behavior in the dynamics of a society of living individuals: the stochastic game of life. J. Theor. Biol. 187(2), 183–194 (1997)CrossRefGoogle Scholar
  171. 171.
    N., W., A., R.: The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex (1946)Google Scholar
  172. 172.
    Nardi, F.R., Olivieri, E., Scoppola, E.: Anisotropy effects in nucleation for conservative dynamics. J. Stat. Phys. 119(3), 539–595 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  173. 173.
    Nardi, F.R., Spitoni, C.: Sharp asymptotics for stochastic dynamics with parallel updating rule with self-interaction. J. Stat. Phys 4(146), 701–718 (2012)zbMATHCrossRefGoogle Scholar
  174. 174.
    von Neumann, J.: The theory of self-reproducing automata. In: Burks, A.W. (ed.) The Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)Google Scholar
  175. 175.
    Ódor, G., Szolnoki, A.: Directed-percolation conjecture for cellular automata. Phys. Rev. E 53, 2231–2238 (1996)CrossRefGoogle Scholar
  176. 176.
    Olivieri, E., Vares, M.E.: Large deviations and metastability, Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  177. 177.
    Penington, C., Hughes, B., Landman, K.: Building macroscale models from microscale probabilistic models: A general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E 84(4), 41,120 (2011)Google Scholar
  178. 178.
    Ponselet, L.: Phase transitions in probabilistic cellular automata. Ph.D. thesis, Université catholique de Louvain (2013)Google Scholar
  179. 179.
    Procacci, A., Scoppola, B., Scoppola, E.: Probabilistic Cellular Automata for low temperature Ising model. J. Stat. Phys. 165, 991–1005 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    Rajewsky, N., Schreckenberg, M.: A probabilistic cellular automaton for evolution. J. Phys. 5(9), 1129–1134 (1995)MathSciNetGoogle Scholar
  181. 181.
    Regnault, D.: Directed percolation arising in stochastic cellular automata analysis. In: Ochmanski, E., Tyszkiewicz, J. (eds.) Mathematical Foundations of Computer Science 2008. Lecture Notes in Computer Science, vol. 5162, pp. 563–574. Springer, Berlin (2008)CrossRefGoogle Scholar
  182. 182.
    del Rey, A.M.: A computer virus spread model based on cellular automata on graphs. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) LNCS : Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living, vol. 5518, pp. 503–506. Springer, Berlin (2009)Google Scholar
  183. 183.
    Rouquier, J.-B.: Robustesse et émergence dans les systèmes complexes: le modèle des automates cellulaires. Ph.D. thesis, ÉNS Lyon (2008)Google Scholar
  184. 184.
    Rouquier, J.-B., Morvan, M.: Coalescing cellular automata: synchronization by common random source for asynchronous updating. J. Cell. Automata 4, 55–78 (2009)Google Scholar
  185. 185.
    Sarkar, P.: A brief history of cellular automata. ACM Comput. Surv. 32(1), 80–107 (2000)CrossRefGoogle Scholar
  186. 186.
    Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-diffusion networks. Nat. Comput. 15(2), 197–214 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  187. 187.
    Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley (2012)Google Scholar
  188. 188.
    Schneckenreither, G., Popper, N., Zauner, G., Breitenecker, F.: Modelling SIR-type epidemics by ODEs, PDEs, difference equations and cellular automata - A comparative study. Simul. Model. Pract. Theory 16(8), 1014–1023 (2008)CrossRefGoogle Scholar
  189. 189.
    Schnell, S., Grima, R., Maini, P.: Multiscale modeling in biology. Am. Sci. 95, 134–142 (2007)CrossRefGoogle Scholar
  190. 190.
    Schonmann, H.R., Shlosman, B.S.: Wulff droplets and the metastable relaxation of kinetic isingmodels. Commun. Math. Phys. 194(2), 389–462 (1998)zbMATHCrossRefGoogle Scholar
  191. 191.
    Shnirman, M.: On the problem of ergodicity of a Markov chain with infinite set of states. Probl. Kibern. 20, 115–124 (1968)Google Scholar
  192. 192.
    Simpson, M.J., Merrifield, A., Landman, K.A., Hughes, B.D.: Simulating invasion with cellular automata: connecting cell-scale and population-scale properties. Phys. Rev. E 76(2), 021918 (2007)Google Scholar
  193. 193.
    Sipper, M.: Simple + parallel + local = Cellular computing. In: M. Schwefel, A. Eiben, E. Bäck, T. Schoenauer (ed.) Fifth International Conference on Parallel Problem Solving from Nature (PPSN V), vol. 1498, Lecture Notes in Computer Science, pp. 653–662. Springer, Heidelberg (1998)Google Scholar
  194. 194.
    Slimi, R., El Yacoubi, S.: Spreadable Probabilistic Cellular Automata model: an application in epidemiology. In: ACRI 2006. Lecture Notes in Computer Science, vol. 4173, pp. 330–336. Springer, Berlin (2006)Google Scholar
  195. 195.
    Słowiński, P., MacKay, R.S.: Phase diagrams of majority voter probabilistic cellular automata. J. Stat. Phys. 159(1), 43–61 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  196. 196.
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)Google Scholar
  197. 197.
    Stavskaya, O.N., Piatetsky shapiro, G.: Homogeneous networks of spontaneously active elements. Problemy Kibernet 20, 91–106 (1968)Google Scholar
  198. 198.
    Sutner, K.: Computational classification of cellular automata. Int. J. Gen. Syst. 41(6), 595–607 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  199. 199.
    Szabó, A., Merks, R.M.H.: Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution. Front. Oncol. 3, 87 (2013)CrossRefGoogle Scholar
  200. 200.
    Taggi, L.: Critical probabilities and convergence time of percolation probabilistic cellular automata. J. Stat. Phys. 159(4), 853–892 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Phys. D 10, 117–127 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  202. 202.
    Tomé, T., de Felício, J.R.D.: Probabilistic cellular automaton describing a biological immune system. Phys. Rev. E 53(4), 3976–3981 (1996)CrossRefGoogle Scholar
  203. 203.
    Toom, A.: Nonergodic multidimensional systems of automata. Probl. Inf. Trans. 10, 239–246 (1974)MathSciNetzbMATHGoogle Scholar
  204. 204.
    Toom, A.: Multicomponent Random Systems, chap. Stable and Attractive Trajectories in Multicomponent Systems, pp. 549–575. Marcel Dekker Inc (1980)Google Scholar
  205. 205.
    Toom, A.: Algorithmical unsolvability of the ergodicity problem for binary cellular automata. Markov process. Related Fields 6(4), 569–577 (2000)MathSciNetzbMATHGoogle Scholar
  206. 206.
    Toom, A.L., Vasilyev, N.B., Stavskaya, O.N., Mityushin, L.G., Kurdyumov, G.L., Pirogov, S.A.: Locally interacting systems and their application in biology. In: Dobrushin, Kryukov, Toom (eds.) Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis, pp. 1–182. Springer, Berlin (1978)Google Scholar
  207. 207.
    Tristan, J.B., Zaheer, M., Steel, G.L.J., Green, S.J.: Learning topics with stochastic cellular automata dynamics. In: Neural Information Processing Systems (2015)Google Scholar
  208. 208.
    Ulam, S.: Random processes and transformations. In: Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, pp. 264–275. American Mathematical Society, Providence, R. I. (1952)Google Scholar
  209. 209.
    Vaserstein, L.N.: Markov processes over denumerable products of spaces describing large system of automata. Problemy Peredači Informacii 5(3), 64–72 (1969)Google Scholar
  210. 210.
    Vaserstein, L.N., Leontovich, A.M.: Invariant measures of certain Markov operators that describe a homogeneous random medium. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 6(1), 71–80 (1970)Google Scholar
  211. 211.
    Vichniac, G.Y.: Simulating physics with cellular automata. Phys. D 10, 96–116 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  212. 212.
    Werner, W.: Percolation et modèle d’Ising. Collection SMF. Société Mathématique de France, Paris (2009)zbMATHGoogle Scholar
  213. 213.
    White, S.H., Del Rey, A.M., Sanchez, G.R.: Using cellular automata to simulate epidemic diseases. Appl. Math. Sci. 3, 959–968 (2009)MathSciNetzbMATHGoogle Scholar
  214. 214.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601–644 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  215. 215.
    Wolfram, S.: Cellular automata as models of complexity. Nature 311(5985), 419–424 (1984)CrossRefGoogle Scholar
  216. 216.
    Wolfram, S.: Computation theory of cellular automata. Commun. Math. Phys. 96(1), 15–57 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  217. 217.
    Worsch, T.: Cellular automata as models of parallel computation. In: Computational Complexity Theory, Techniques, and Applications, pp. 298–311 (2012)Google Scholar
  218. 218.
    Wu, A.C., Xu, X.J., Wang, Y.H.: Excitable greenberg-hastings cellular automaton model on scale-free networks. Phys. Rev. E 75, 032,901 (2007)Google Scholar
  219. 219.
    Xiao, X., Shao, S.H., Chou, K.C.: A probability cellular automaton model for hepatitis B viral infections. Biochem. Biophys. Res. Commun. 342(2), 605–610 (2006)CrossRefGoogle Scholar
  220. 220.
    Zamith, M., Leal-Toledo, R.C.P., Clua, E., Toledo, E.M., Magales, G.V.d.: A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction. J. Comput. Sci. 9, 51–56 (2015)Google Scholar
  221. 221.
    Zinck, R.D., Johst, K., Grimm, V.: Wildfire, landscape diversity and the Drossel-Schwabl model. Ecol. Model. 221(1), 98–105 (2010)CrossRefGoogle Scholar
  222. 222.
    Zorzenon dos Santos, R., Coutinho, S.: Dynamics of HIV infection: a cellular automata approach. Phys. Rev. Lett. 87(16), 168,102 (2001)Google Scholar
  223. 223.
    Zuse, K.: The computing universe. Int. J. Theor. Phys. 21(6–7), 589–600 (1982)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Roberto Fernández
    • 1
  • Pierre-Yves Louis
    • 2
    Email author
  • Francesca R. Nardi
    • 3
    • 4
    • 5
  1. 1.Universiteit UtrechtUtrechtThe Netherlands
  2. 2.Laboratoire de Mathématiques et Applications UMR 7348Université de Poitiers, CNRSPoitiersFrance
  3. 3.Technische Universiteit EindhovenEindhovenThe Netherlands
  4. 4.Università di FirenzeFlorenceItaly
  5. 5.Dipartmento di Matematica e InformaticaUniversitá di FirenzeFirenzeItaly

Personalised recommendations