Skip to main content

Using Weight Constraints and Masking to Improve Fuzzy Cognitive Map Models

  • Conference paper
  • First Online:
Book cover Creativity in Intelligent Technologies and Data Science (CIT&DS 2017)

Abstract

The paper presents a novel supervised learning method for fuzzy cognitive maps adapted from the theory of artificial neural networks. The main objective in designing the method was to pay closer attention to the distinctions that exist between fuzzy cognitive maps, and the original model for which the method was intended – whether it was a feedforward neural network, a recurrent network, or an energy-based model. The augmented version strives to properly build upon the various strengths of fuzzy cognitive maps – particularly on their interpretability, which arises from the close coupling that exists between their nodes and particular concepts. It is shown that the augmented method is able to outperform existing approaches. Notably, the ability of the learned model to generalize correctly, and to faithfully reconstruct the original system is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, M.C., Kim, C.O., Hong, S.R., Kwon, I.H.: Forward-backward analysis of RFID-enabled supply chain using fuzzy cognitive map and genetic algorithm. Expert Syst. Appl. 35(3), 1166–1176 (2008)

    Article  Google Scholar 

  2. Trappey, A.J., Trappey, C.V., Wu, C.R.: Genetic algorithm dynamic performance evaluation for RFID reverse logistic management. Expert Syst. Appl. 37(11), 7329–7335 (2010)

    Article  Google Scholar 

  3. Vaščák, J., Hvizdoš, J.: Vehicle navigation by fuzzy cognitive maps using sonar and RFID technologies. In: 2016 IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 75–80. IEEE (2016)

    Google Scholar 

  4. Groumpos, P.P.: Fuzzy cognitive maps: basic theories and their application to complex systems. In: Glykas, M. (ed.) Fuzzy Cognitive Maps, pp. 1–22. Springer, Berlin (2010)

    Google Scholar 

  5. Dickerson, J.A., Kosko, B.: Virtual worlds as fuzzy cognitive maps. In: Virtual Reality Annual International Symposium, pp. 471–477. IEEE (1993)

    Google Scholar 

  6. Stach, W., Kurgan, L., Pedrycz, W.: A survey of fuzzy cognitive map learning methods. Issues Soft Comput. Theory Appl. 71–84 (2005)

    Google Scholar 

  7. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153(3), 371–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mls, K., Cimler, R., Vaščák, J., Puheim, M.: Interactive evolutionary optimization of fuzzy cognitive maps. Neurocomputing 232, 58–68 (2017)

    Article  Google Scholar 

  9. Papageorgiou, E.I., Parsopoulos, K.E., Stylios, C.S., Groumpos, P.P., Vrahatis, M.N.: Fuzzy cognitive maps learning using particle swarm optimization. J. Intell. Inf. Syst. 25(1), 95–121 (2005)

    Article  Google Scholar 

  10. Huerga, A.V.: A balanced differential learning algorithm in fuzzy cognitive maps. In: Proceedings of the 16th International Workshop on Qualitative Reasoning, vol. 2002 (2002)

    Google Scholar 

  11. Papageorgiou, E., Stylios, C.D., Groumpos, P.P.: Active hebbian learning algorithm to train fuzzy cognitive maps. Int. J. Approximate Reasoning 37(3), 219–249 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stach, W., Kurgan, L., Pedrycz, W.: Data-driven nonlinear hebbian learning method for fuzzy cognitive maps. In: IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2008 (IEEE World Congress on Computational Intelligence), pp. 1975–1981. IEEE (2008)

    Google Scholar 

  13. Papageorgiou, E.I., Groumpos, P.P.: A weight adaptation method for fuzzy cognitive map learning. Soft. Comput. 9(11), 846–857 (2005)

    Article  MATH  Google Scholar 

  14. Gregor, M., Groumpos, P.P.: Tuning the position of a fuzzy cognitive map attractor using backpropagation through time. In: Proceedings of The 7th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2013), Athens (2013)

    Google Scholar 

  15. Gregor, M., Groumpos, P.P.: Training fuzzy cognitive maps using gradient-based supervised learning. In: Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I. (eds.) AIAI 2013. IAICT, vol. 412, pp. 547–556. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41142-7_55

    Chapter  Google Scholar 

  16. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The rprop algorithm. In: 1993 IEEE International Conference on Neural Networks, IEEE. pp. 586–591 (1993)

    Google Scholar 

  17. Igel, C., Hüsken, M.: Improving the RPROP learning algorithm. In: Proceedings of the Second International ICSC Symposium on Neural Computation (NC 2000), Citeseer pp. 115–121 (2000)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Cultural and Educational Grant Agency of the Slovak Republic (KEGA) No. 038ŽU-4/2017: “Laboratory education methods of automatic identification and localization using radiofrequency identification technology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Gregor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gregor, M., Groumpos, P.P., Gregor, M. (2017). Using Weight Constraints and Masking to Improve Fuzzy Cognitive Map Models. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds) Creativity in Intelligent Technologies and Data Science. CIT&DS 2017. Communications in Computer and Information Science, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-65551-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65551-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65550-5

  • Online ISBN: 978-3-319-65551-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics