Skip to main content

Development of the Unified Technological Platform for Constructing the Domain Knowledge Base Through the Context Analysis

  • Conference paper
  • First Online:
Creativity in Intelligent Technologies and Data Science (CIT&DS 2017)

Abstract

The article considers the architecture of the technological platform designated for construction of the knowledge base (KB) by integrating a set of logical rules with fuzzy ontologies. Development of integration methods for a set of logical rules and fuzzy ontologies are necessary for decision support process. The KB represents the storage of knowledge and contexts of different problem areas (PrA). The PrA ontology context is a specific state of the KB content than can be chosen from a set of the ontology states. The state was obtained as a result of either versioning or constructing the KB content from different points of views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubiolo, M., Caliusco, M.L., Stegmayer, G., Coronel, M., Fabrizi, M.G.: Knowledge discovery through ontology matching: an approach based on an artificial neural network model. Inf. Sci. 194, 107–119 (2012)

    Article  Google Scholar 

  2. Renu, R.S., Mocko, G., Koneru, A.: Use of big data and knowledge discovery to create data backbones for decision support systems. Proc. Comput. Sci. 20, 446–453 (2013)

    Article  Google Scholar 

  3. Ltifi, H., Kolski, C., Ayed, M.B., Alimi, A.M.: A human-centred design approach for developing dynamic decision support system based on knowledge discovery in databases. J. Decis. Syst. 22, 69–96 (2013)

    Article  Google Scholar 

  4. Rajpathak, D., Chougule, R., Bandyopadhyay, P.: A domain-specific decision support system for knowledge discovery using association and text mining. Knowl. Inf. Syst. 31, 405–432 (2012)

    Article  Google Scholar 

  5. Bobillo, F., Straccia, U.: FuzzyDL: an expressive fuzzy description logic reasoner. In: Proceedings of the 17th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), pp. 923–930. IEEE Computer Society (2008)

    Google Scholar 

  6. Gao, M., Liu, C.: Extending OWL by fuzzy description logic. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2005), pp. 562–567. IEEE Computer Society (2005)

    Google Scholar 

  7. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based methodology for e-service discovery. Inf. Syst. 31(4), 361–380 (2006)

    Article  Google Scholar 

  8. Guarino, N., Musen, M.A.: Ten years of applied ontology. Appl. Ontol. 10(3–4), 169–170 (2015)

    Article  Google Scholar 

  9. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the representation of events and endurants in business models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 20–36. Springer, Cham (2016). doi:10.1007/978-3-319-45348-4_2

    Chapter  Google Scholar 

  10. Falbo, R.A., Quirino, G.K., Nardi, J.C., Barcellos, M.P., Guizzardi, G., Guarino, N.: An ontology pattern language for service modeling. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 321–326 (2016)

    Google Scholar 

  11. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 541–544 (2003)

    Google Scholar 

  12. Gruber, T.: Ontology. In: Liu, L., Tamer Özsu, M. (eds.) Entry in the Encyclopedia of Database Systems. Springer, New York (2008). doi:10.1007/978-0-387-39940-9_1318

    Google Scholar 

  13. Medche, A.: Ontology Learning for the Semantic Web. Engineering and Computer Science, vol. 665. Kluwer International, Dordrecht (2002). doi:10.1007/978-1-4615-0925-7

    Book  Google Scholar 

  14. Gavrilova, T.A.: Ontologicheskii podkhod k upravleniiu znaniiami pri razrabotke korporativnykh informatsionnykh sistem (The ontological approach to knowledge management in the development of corporate information systems). Novosti iskusstvennogo intellekta (News Artif. Intell.) 2(56), 24–29 (2003)

    Google Scholar 

  15. Namestnikov, A.M, Filippov, A.A., Avvakumova, V.S.: An ontology based model of technical documentation fuzzy structuring. In: CEUR Workshop Proceedings, SCAKD 2016, Moscow, Russian Federation. vol. 1687, pp. 63–74 (2016)

    Google Scholar 

  16. Yarushkina, N., Moshkin, V., Andreev, I., Klein, V., Beksaeva, E.: Hybridization of fuzzy inference and self-learning fuzzy ontology-based semantic data analysis. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16). AISC, vol. 450, pp. 277–285. Springer, Cham (2016). doi:10.1007/978-3-319-33609-1_25

    Google Scholar 

  17. Filippov, A.A., Moshkin, V.S., Shalaev, D.O., Yarushkina, N.G.: Uniform ontological data mining platform. In: Golenkov, V., et al. (eds) Open Semantic Technologies of Intelligent Systems (OSTIS-2016): Proceedings of VI International Science Technological Conference (Minsk, 18–20 February 2016), pp. 77-82. BSUIR, Minsk (2016)

    Google Scholar 

  18. SWRL: A semantic web rule language combining OWL and RuleML. https://www.w3.org/Submission/SWRL. Accessed 20 Jan 2017

  19. Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: Proceedings of the 19th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), pp. 2695–2700. IEEE Press (2010)

    Google Scholar 

  20. Spring Boot framework. https://projects.spring.io/spring-boot. Accessed 9 Jan 2017

  21. Neo4j. https://neo4j.com/product. Accessed 10 Jan 2017

  22. Greg Wilkins Jetty vs Tomcat: a comparative analysis (2008). http://www.webtide.com/choose/jetty.jsp. Accessed 9 Jan 2017

  23. Representational state transfer. https://en.wikipedia.org/wiki/Representational_state_transfer. Accessed 9 Jan 2017

  24. Pellet framework. https://github.com/stardog-union/pellet. Accessed 10 Jan 2017

  25. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semantic Web 2, April 2011, pp. 71–87 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research (Grants No. 16-47-732054 and 16-47-732120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Filippov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yarushkina, N., Filippov, A., Moshkin, V. (2017). Development of the Unified Technological Platform for Constructing the Domain Knowledge Base Through the Context Analysis. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds) Creativity in Intelligent Technologies and Data Science. CIT&DS 2017. Communications in Computer and Information Science, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-65551-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65551-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65550-5

  • Online ISBN: 978-3-319-65551-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics