Skip to main content

Relationships Between Forest Vegetation, Parent Material and Soil Development in the Luxembourg Cuesta Landscape

  • Chapter
  • First Online:
  • 450 Accesses

Abstract

In the cuesta landscape, the natural forest vegetation is affected by the clear gradients in parent material. Most forests belong to the alliances Fagion sylvaticae, Luzulo-Fagion and Carpinion betuli. Forest associations show a clear shift in species composition from calcareous to acidic soils. The species-rich Carici-Fagetum and Hordelymo-Fagetum occur on steep slopes on Muschelkalk, with shallow Leptosols and Leptic Regosols, and pH values around 7. Galio-Carpinetum, with many wet-tolerant species, occurs on gentle slopes in Keuper marl, with Luvic Stagnosols and Planosols, pH around 5–6, and perched water tables during part of the year. The relatively species-poor Galio odorati-Fagetum is found on acidic loamy soils, such as the marls of the upper cuesta, Pleistocene river terraces and Loess deposits. Soil types range from Colluvic Regosols to Luvic Stagnosols, with pH values around 4. The species-poor Luzulo-Fagetum is found on plateau and upper cuesta of the Luxembourg sandstone, but also on the oldest river terraces. Soil types range from (Leptic) Arenosols and Podzols to Alic Stagnosols, and pH values are around or below 4. In forests plots on Keuper and Muschelkalk with base-rich, loamy topsoils, parent material was more important to species composition than litter quality. Calcicole species predominated on Muschelkalk, and wet-tolerant species on Keuper, although diversity was lower under beech than under hornbeam. The clear decrease in plant species richness from calcareous to acidic soil is discussed in terms of toxicity, nutrient availability and tolerance to wet conditions, but also in relation to landscape history and regional species pool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedi M, Bartelheimer M, Poschlod P (2012) Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients—a case study in dry sandy grasslands. J Veg Sci 24:1074–1085

    Article  Google Scholar 

  • Aubert M, Hedde M, Decaens T, Bureau F, Margerie P, Alard D (2003) Effects of tree canopy composition on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France). Pedobiologia 47:904–912

    Google Scholar 

  • Bijlsma RJ, Lambers H, Kooijman SALM (2000) A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium-nitrate interactions. Plant Soil 220:49–69

    Article  Google Scholar 

  • Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech—a review. Forestry 80:413–429

    Article  Google Scholar 

  • Braak CJF ter (1988) CANOCO—a FORTRAN program for canonical community ordination by partial detrended canonical correspondence analysis, principal component analysis and redundancy analysis. Technical report: LWA 88-02, Wageningen

    Google Scholar 

  • Broek TMW van den (1989). Clay dispersion and pedogenesis of soils with an abrupt contrast in texture: a hydro-pedological approach on subcatchment scale. Ph.D.-thesis University of Amsterdam, 109 pp

    Google Scholar 

  • Bossuyt B, Hermy M, Deckers J (1999) Migration of herbaceous plant species across ancient-recent forest ecotones in central Belgium. J Ecol 87:628–638

    Article  Google Scholar 

  • Buurman P (1984) Podzols. Van Nostrand Reinhold, Soil Science Series, 450 pp

    Google Scholar 

  • Cammeraat LH (1992) Hydro-geomorphological processes in a small forested sub-cetchment: preferred flow-paths of water. Ph.D.-thesis University of Amsterdam, 158 pp

    Google Scholar 

  • Cammeraat LH (2002) A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surf Proc Land 27:1201–1222

    Article  Google Scholar 

  • Cammeraat LH, Kooijman AM (2009) Biological control of pedological and hydro-geomorphological processes in a deciduous forest ecosystem. Biologia 64:428–432

    Article  Google Scholar 

  • Cody RP, Smith JK (1987) Applied statistics and the SAS programming language. Elsevier Science Publishers Co. Int., Amsterdam, p 280

    Google Scholar 

  • de Graaf MCC, Bobbink R, Roelofs JGM, Verbeek PJM (1998) Plant Ecol 135:185–196

    Article  Google Scholar 

  • Diekmann M, Falkengren-Grerup U (2003) A new species index for forest vascular plants: development of functional indices based on mineralization rates of various forms of soil nitrogen. J Ecol 86:269–283

    Article  Google Scholar 

  • Duchaufour P (1982) Pedology, Pedogenesis and classification. Translated by T.R. Paton. George Allen & Unwin, London, p 448

    Google Scholar 

  • Ellenberg H, Weeber HE, Düll R, Wirth V, Werner W (1974) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze GmbH & Co, Gottingen

    Google Scholar 

  • Ellenberg H (1988) Vegetation Ecology of Central Europe, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Falkengren-Grerup U (1995) Interspecies differences in the preference of ammonium and nitrate in vascular plants. Oecologia 102:305–311

    Article  Google Scholar 

  • Ferraris le Comte de (1777) Reissued in 1965–1970. Carte de Cabinet des Pays-Bas Autrichiens. Bibiliotheque Royale de Belgique, Bruxelles

    Google Scholar 

  • Gessler A, Schneider S, Von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275–285

    Article  Google Scholar 

  • Gigon A (1987) A hierarchic approach in causal ecosystem analysis. The Calcifuge-Calcicole problem in Alpine grasslands. In: Ecological studies, Springer 61:228–244

    Google Scholar 

  • Graae BJ, Sunde PB, Fritzbøger B (2003) Vegetation and soil differences in ancient opposed to new forests. For Ecol Manage 177:179–190

    Article  Google Scholar 

  • Green RN, Trowbridge RL, Klinka K (1993) Towards a taxonomic classification of humus forms. Supplement to Forest Science, vol 39

    Google Scholar 

  • Hane EN, Hamburg SP, Barber AL, Plaut JA (2003) Phytotoxicity of American beech leaf leachate to sugar maple seedlings in a greenhouse experiment. Can J For Res 33:814–821

    Article  Google Scholar 

  • Hill MO (1979) TWINSPAN manual ecology and systematics, New York

    Google Scholar 

  • Hepper CM (1983) The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytol 92:389–399

    Article  Google Scholar 

  • IUSS (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  • Jobidon R (1993) Nitrate fertilization stimulates emergence of red raspberry (Rubus idaeus L.) under forest canopy. Nutr Cycl Agroecosyst 36:91–94

    Google Scholar 

  • Johnson CR, Jarrell WM, Menge JA (1984) Influence of ammonium: nitrate ratio and solution pH on mycorrhizal infection, growth and nutrient composition of Chrysanthemum morifolium var. Circus. Plant Soil 77:151–157

    Article  Google Scholar 

  • Kooijman AM (2010) Litter quality effects on undergrowth species diversity by mass of the organic layer, pH, soil moisture and N-dynamics in Luxembourg beech and hornbeam forests. J Veg Sci 21:248–261

    Article  Google Scholar 

  • Kooijman AM, Cammeraat LH (2010) Biological control of beech and hornbeam on species richness via changes in the organic layer, pH and soil moisture characteristics. Funct Ecol 24:469–477

    Article  Google Scholar 

  • Kooijman AM, Martinez-Hernandez GB (2009) Effects of litter quality and parent material on organic matter characteristics and N-dynamics in Luxembourg beech and hornbeam forests. For Ecol Manage 257:1732–1739

    Article  Google Scholar 

  • Kooijman AM, Dopheide J, Sevink J, Takken I, Verstraten JM (1998) Nutrient limitation and their implications for the effects of atmospheric deposition in lime-poor and lime-rich coastal dunes in the Netherlands. J Ecol 86:511–526

    Article  Google Scholar 

  • Laskowski R, Niklinska M, Maryanski M (1995) The dynamics of chemical elements in forest litter. Ecology 76:1393–1406

    Article  Google Scholar 

  • Leberecht M, Dannenmann M, Tejedor J, Simon J, Rennenberg H, Polle A (2016) Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. Plant, Cell Environ 39:2691–2700

    Article  Google Scholar 

  • Lindsay WL, Moreno EC (1966) Phosphate phase equilibria in soils. Proceedings of the SSSA 24:177–182

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic press London, 889 pp

    Google Scholar 

  • Niemeyer T, Ries C, Härdtle W (2010) Die Waldgesellschaften Luxemburgs. Vegetation, Standort, Vorkommen und Gefährdung. Ferrantia 57, Musée national d’histoire naturelle, Luxembourg, 122 pp

    Google Scholar 

  • van Oijen D, Feijen M, Hommel P, den Ouden J, de Waal R (2005) Effects of tree species composition on within-forest distribution of understorey species. Appl Veg Sci 8:155–166

    Article  Google Scholar 

  • Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang Z (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Tooren BF van, Sparrius LB (2007) Voorlopige verspreidingsatlas van de Nederlandse mossen. Bryologische en Lichenologische Werkgroep van de KNNV, 350 pp

    Google Scholar 

  • Tyler G (2003) Some ecophysiological approaches to species richness and calcicole/calcifuge behaviour—contribution to a debate. Folia Geobotanica 38:419–428

    Article  Google Scholar 

  • van der Meijden R (2005) Heukels Flora van Nederland, drieëntwintigste druk. Wolters-Noordhoff, Groningen

    Google Scholar 

  • Vandelook F, van de Moer D, van Assche JA (2008) Environmental signals for seed germination reflect habitat adaptations in four temperate Caryophyllaceae. Funct Ecol 22:470–478

    Article  Google Scholar 

  • van den Berg LJL, Dorland E, Vergeer P, Hart M, Bobbink R, Roelofs JGM (2005) Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol 166:551–564

    Article  Google Scholar 

  • van Calster H, Baeten L, Verheyen K, de Keersmaeker L, Dekeyser S, Rogister JE, Hermy M (2008) Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. For Ecol Manage 256:519–528

    Article  Google Scholar 

  • Verhagen JM, Duyts H, Laanbroek HJ (1992) Competition for ammonium between nitrifying and heterotrophic bacteria in continuously percolated soil columns. Appl Environ Microbiol 58:3303–3311

    Google Scholar 

  • Verhoef P (1966) Geomorphological and pedological investigations in the Redange-sur-Attert area (Grand Duchy of Luxemburg). Ph.D.-thesis University of Amsterdam, 531 pp

    Google Scholar 

  • Wardenaar ECP, Sevink J (1992) A comparative study of soil formation in primary stands of Scots pine (planted) and poplar (natural) on calcareous dune sands in the Netherlands. Plant Soil 140:109–120

    Article  Google Scholar 

  • Werf S van der (1991) Bosgemeenschappen; Natuurbeheer in Nederland deel 5. Pudoc Wageningen

    Google Scholar 

  • Zohlen A, Tyler G (2004) soluble inorganic tissue phosphorus and Calcicole-Calcifuge behaviour of plants. Ann Bot 94:427–432

    Article  Google Scholar 

  • Zvereva EL, Toivonen E, Kozlov MV (2007) Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Glob Ecol Biogeogr 17:305–319

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mark Bokhorst, Ricardo van Dijk, Martijn Heuff, Gertruud Houkes, Vincent Kalkman, Robert Kuiper, Christiaan Kwakkestein, Maartje van Meteren, Marieke Nonhebel, Inka de Pijper, Ceciel Rip, Kasper de Rooy, Vincent Simons, Jeroen Timmers, Femke Tonneijck, Floris van der Valk, Mirjam Vriend†, Riekje Wiersma and Sybren Ydema for collecting the student dataset. Bas van Dalen, Greet Kooijman-Schouten and Benito Martinez-Hernandez helped with fieldwork and data collection in other parts of the study, and Leo Hoitinga, Leen de Lange and Piet Wartenbergh supported us in the laboratory. Photographs were made by Jan van Arkel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kooijman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kooijman, A.M., Smit, A. (2018). Relationships Between Forest Vegetation, Parent Material and Soil Development in the Luxembourg Cuesta Landscape. In: Kooijman, A., Cammeraat, L., Seijmonsbergen, A. (eds) The Luxembourg Gutland Landscape. Springer, Cham. https://doi.org/10.1007/978-3-319-65543-7_8

Download citation

Publish with us

Policies and ethics