Skip to main content

Applications of Physiotope Mapping in the Cuesta Landscape of Luxembourg

  • Chapter
  • First Online:
The Luxembourg Gutland Landscape

Abstract

Digital physiotope maps combine multi-source abiotic information, and can be used to assess derived characteristics such as natural hazards and type of forest community. Physiotopes are spatially explicit functional landscape units that stratify landscapes into distinct units, resulting from the interplay between geological, geomorphological and soil processes. Boundaries of the physiotopes in the cuesta landscape of Luxembourg are based on geological boundaries, geomorphological processes boundaries and key indicators of soil forming processes which are supplemented by quantitative topographic land surface parameters such as slope angle. A physiotope map is presented for an area near the village of Bigelbach, which reflects the resource potential of the landscape. We present three derived applications of the physiotope map: a hazard zonation map, a forest community map and a soil erosion vulnerability map. The hazard zonation map is based on weighting and ranking of attributes of the physiotopes, such as process activity, materials, slope angle and forest cover. The derived forest community map strongly reflects the spatial distribution of geological substrate and soils of the main physiotope units along the cuesta. The soil erosion vulnerability map implements the Revised Universal Soil Loss Equation in combination with the physiotope map. The physiotope map content can be extended and updated and its derived products may support landscape conservation and restoration programs, and can be used to monitor temporal changes within a landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brock O (2012) Geomorfologische analyse van Bigelbach, Luxemburg. Unpublished student report, University of Amsterdam

    Google Scholar 

  • Cammeraat LH, Kooijman AM, Seijmonsbergen AC (2009) Syllabus Luxemburg. Veldpraktikum Luxemburg, Opleiding Aardwetenschappen-Fysische Geografie, Universiteit van Amsterdam

    Google Scholar 

  • Carte Géologique 1:25.000, Diekirch. http://map.geoportail.lu. Accessed 11 Nov 2015

  • Denis A, Stevens A, van Wesemael B, Udelhoven T, Tychon B (2014) Soil organic carbon assessment by field and airborne spectrometry in bare croplands: accounting for soil surface roughness. Geoderma 226–227:94–102. doi:10.1016/j.geoderma.2014.02.015

  • Duijsings JJHM (1987) A sediment budget for a forested catchment in Luxembourg and its implications for channel development. Earth Surf Proc Land 12:173–184

    Article  Google Scholar 

  • Ferraris LeComte (1777, reissued in 1965–1970) Carte de Cabinet des Pays-Bas Autrichens. Bibl Royale de Belgique, Bruxelles

    Google Scholar 

  • Gray M (2004) Geodiversity: valuing and conserving abiotic nature. Wiley, Chichester

    Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi:10.1016/j.earscirev.2012.02.001

  • Hengl T, Reuter HI (eds) (2008) Geomorphometry: concepts, software, applications. Developments in Soil Science, vol 33. Elsevier

    Google Scholar 

  • Hill MO (1979) TWINSPAN A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, New York

    Google Scholar 

  • Imeson AC, Vis M (1984) The output of sediments and solutes from forested and cultivated clayey drainage basins in Luxembourg. Earth Surf Proc 9:585–594

    Article  Google Scholar 

  • IUSS Working Group WRB (2015) World Reference base for soil resources. World Soil Resources Reports 106. FAO, Rome

    Google Scholar 

  • Klijn F, Udo De Haes HA (1994) A hierarchical approach to ecosystems and its implications for ecological land classification. Landscape Ecol 9:89–104

    Article  Google Scholar 

  • Koene E (2012) Veldrapportage Bigelbach—Fysiotopenverslag. Unpublished student report. University of Amsterdam, 47 p

    Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation, 3rd edn. Blackwell, Malden

    Google Scholar 

  • Niemeyer T, Ries C, Härdtle W (2010) Die Waldgesellschaften Luxemburgs: Vegetation, Standort, Vorkommen und Gefährdung. Ferrantia 57. Musée national d’histoire naturelle, Luxembourg

    Google Scholar 

  • Oosterhuis HJ (2012) Onderzoek naar vegetatie en standplaatsfactoren in Bigelbach, Luxemburg. Unpublished student report, University of Amsterdam, 29 p

    Google Scholar 

  • Panagos P, Meusburger K, Ballabio C, Borrelli P, Alewell C (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ 479&480:189–200. doi:10.1016/j.scitotenv.2014.02.010

  • Panagos P, Borrelli P, Meusburger K, Alewell C, Lugato E, Montanarella L (2015a) Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48:38–50. doi:10.1016/j.landusepol.2015.05.021

  • Panagos P, Ballabio C, Borrelli P, Meusburger K, Klik A, Rousseva S, Percec-Tadic M, Michaelides S, Hrabalíková M, Olsen P, Aalto J, Lakatos Mn, Rymszewicz A, Dumitrescu A, Beguería S, Alewell C (2015b) Rainfall erosivity in Europe. Sci Total Environ 511:801–814. doi:10.1016/j.scitotenv.2015.01.008

  • Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, Montanarella L, Alewell C (2015c) The new assessment of soil loss by water erosion in Europe. Environ Sci Policy 54:438–447. doi:10.1016/j.envsci.2015.08.012

  • Parks KE, Mulligan M (2010) On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers Conserv 19(9):2751–2766

    Article  Google Scholar 

  • Peano A, Casatella C (2011) Landscape assessment and monitoring. In: Cassatella C, Peano A (eds) Landscape indicators—assessing and monitoring landscape quality, Springer, pp 1–14

    Google Scholar 

  • Renard KG, Foster GR, Weessies GA, McCool DK (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In: Yoder DC (ed) Agriculture handbook 703, U.S. Department of Agriculture

    Google Scholar 

  • Soeters R, Westen CJV (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides—investigation and mitigation. Special report 247. Transportation research Board, National Research Council, Washington, U.S. pp 129–177

    Google Scholar 

  • van den Broek TMW (1989) Clay dispersion and paedogenesis of soils with an abrupt contrast in texture. Unpublished Ph.D. thesis, University of Amsterdam, Amsterdam

    Google Scholar 

  • van Hooff P, Jungerius PD (1984) Sediment source and storage in small watersheds on the Keuper marls in Luxembourg. Catena 11:133–144

    Google Scholar 

  • Van der Werf S (1991) Bosgemeenschappen; Natuurbeheer in Nederland, deel 5. PUDOC Wageningen

    Google Scholar 

  • Van Zon H (1980) The transport of leaves and sediment over a forest floor. Catena 7:97–110

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. Agriculture Handbook No. 537, Washington, US Department of Agriculture Science and Education Administration

    Google Scholar 

Download references

Acknowledgements

We thank Henk Jan Oosterhuis, Olaf Brock and Erik Koene for their important fieldwork data and maps near Bigelbach. The GIS-studio (www.GIS-studio.nl) of IBED is thanked for computational and software support. The work builds on decades of mapping in the region by students of the University of Amsterdam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Seijmonsbergen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Seijmonsbergen, A.C., Cammeraat, L.H., Kooijman, A.M. (2018). Applications of Physiotope Mapping in the Cuesta Landscape of Luxembourg. In: Kooijman, A., Cammeraat, L., Seijmonsbergen, A. (eds) The Luxembourg Gutland Landscape. Springer, Cham. https://doi.org/10.1007/978-3-319-65543-7_11

Download citation

Publish with us

Policies and ethics