Skip to main content

Q-Conditional Symmetries of Reaction-Diffusion Systems

  • Chapter
  • First Online:
Nonlinear Reaction-Diffusion Systems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2196))

  • 1400 Accesses

Abstract

A recently developed theoretical background for searching Q-conditional (nonclassical) symmetries of systems of evolution partial differential equations is presented. We generalize the standard definition of Q-conditional symmetry by introducing the notion of Q-conditional symmetry of the p-th type and show that different types of symmetry of a given system generate a hierarchy of conditional symmetry operators. It is shown that Q-conditional symmetry of the p-th type possesses some special properties, which distinguish them from the standard conditional symmetry. The general class of two-component nonlinear reaction-diffusion systems is examined in order to find the Q-conditional symmetry operators. The relevant systems of so-called determining equations are solved under additional restrictions. As a result, several reaction-diffusion systems possessing conditional symmetry are constructed. In particular, it is shown that the diffusive Lotka–Volterra system, the Belousov–Zhabotinskii system (with the correctly specified coefficients) and some of their generalizations admit Q-conditional symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexiades, V., Solomon, A.: Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publishing Corporation, Washington (1993)

    Google Scholar 

  2. Allassia, F., Nucci, M.C.: Symmetries and heir equations for the laminar boundary layer model. J. Math. Anal. Appl. 201, 911–42 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ames, W.F.: Nonlinear Partial Differential Equations in Engineering. Academic, New York (1972)

    MATH  Google Scholar 

  4. Arrigo, D.J., Ekrut, D.A., Fliss, J.R., Le, L.: Nonclassical symmetries of a class of Burgers’ systems. J. Math. Anal. Appl. 371, 813–820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barannyk, T.: Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations. Proc. Inst. Math. Nat. Acad. Sci. Ukr. 43, 80–85 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Berman, V.S., Danilov, Yu. A.: Group properties of the generalized Landau-Ginzburg equation. Sov. Phys. Dokl. 26, 484–486 (1981)

    Google Scholar 

  7. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  8. Bluman, G.W., Cole, J.D.: The general similarity solution of the heat equation. J. Math. Mech. 18, 1025–1042 (1969)

    MathSciNet  MATH  Google Scholar 

  9. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  10. Britton, N.F.: Essential Mathematical Biology. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  11. Carini, M., Fusco, D., Manganaro, N.: Wave-like solutions for a class of parabolic models. Nonlinear Dyn. 32, 211–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cherniha, R.: Lie symmetries of nonlinear two-dimensional reaction-diffusion systems. Rep. Math. Phys. 46, 63–76 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cherniha, R.: Conditional symmetries for systems of PDEs: new definition and their application for reaction-diffusion systems. J. Phys. A Math. Theor. 43, 405207 (19 pp) (2010)

    Google Scholar 

  14. Cherniha, R., Cherniha, N.: Exact solutions of a class of nonlinear boundary value problems with moving boundaries. J. Phys. A Math. Gen. 26, L935–L940 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cherniha, R., Davydovych, V.: Conditional symmetries and exact solutions of the diffusive Lotka-Volterra system. Math. Comput. Model. 54, 1238–1251 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cherniha, R., Davydovych, V.: Conditional symmetries and exact solutions of nonlinear reaction-diffusion systems with non-constant diffusivities. Commun. Nonlinear Sci. Numer. Simul. 17, 3177–3188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cherniha, R., Davydovych, V.: Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system. J. Phys. A Math. Theor. 46, 185204 (14 pp) (2013)

    Google Scholar 

  18. Cherniha, R., Davydovych, V.: Reaction-diffusion systems with constant diffusivities: conditional symmetries and form-preserving transformations. In: Algebra, Geometry and Mathematical Physics, vol. 85, pp. 533–553. Springer, Berlin/Heidelberg (2014)

    Google Scholar 

  19. Cherniha, R., Davydovych, V.: Nonlinear reaction-diffusion systems with a non-constant diffusivity: conditional symmetries in no-go case. Appl. Math. Comput. 268, 23–34 (2015)

    MathSciNet  Google Scholar 

  20. Cherniha, R., Henkel, M.: On nonlinear partial differential equations with an infinite-dimensional conditional symmetry. J. Math. Anal. Appl. 298, 487–500 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cherniha, R., King, J.R.: Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I. J. Phys. A Math. Gen. 33, 267–282, 7839–7841 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cherniha, R., King, J.R.: Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II. J. Phys. A Math. Gen. 36, 405–425 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cherniha, R., King, J.R.: Nonlinear reaction-diffusion systems with variable diffusivities: Lie symmetries, ansätze and exact solutions. J. Math. Anal. Appl. 308, 11–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cherniha, R., King, J.R.: Lie symmetries and conservation laws of nonlinear multidimensional reaction-diffusion systems with variable diffusivities. IMA J. Appl. Math. 71, 391–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cherniha, R., Pliukhin, O.: New conditional symmetries and exact solutions of reaction–diffusion systems with power diffusivities. J. Phys. A Math. Theor. 41, 185208–185222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cherniha, R., Pliukhin, O.: New conditional symmetries and exact solutions of reaction–diffusion–convection equations with exponential nonlinearities. J. Math. Anal. Appl. 403, 23–37 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cherniha, R.M., Serov, M.I.: Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection term. Eur. J. Appl. Math. 9, 527–542 (1998)

    Article  MATH  Google Scholar 

  28. Cherniha, R.M., Serov, M.I.: Nonlinear systems of the Burgers-type equations: Lie and Q-conditional symmetries, ansatze and solutions. J. Math. Anal. Appl. 282, 305–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feireisl, E., Hilhorst, D., Mimura, M., Weidenfeld, R.: On a nonlinear diffusion system with resource-consumer interaction. Hiroshima Math. J. 33, 253–295 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Fokas, A.S., Liu, Q.M.: Generalized conditional symmetries and exact solutions of nonintegrable equations. Theor. Math. Phys. 99, 571–582 (1994)

    Article  MATH  Google Scholar 

  31. Fushchych, W.I., Cherniha, R.M.: The Galilean relativistic principle and nonlinear partial differential equations. J. Phys. A Math. Gen. 18, 3491–3503 (1985)

    Article  MathSciNet  Google Scholar 

  32. Fushchych, W.I., Cherniha, R.M.: Exact solutions of two multi-dimensional nonlinear Schrödinger type equations (in Russian). Inst. Math. Acad. Sci. of USSR, Kyiv (1986, Preprint 86.85)

    Google Scholar 

  33. Fushchych, W., Tsyfra, I.: On a reduction and solutions of nonlinear wave equations with broken symmetry. J. Phys. A Math. Gen. 20, L45–L48 (1987)

    Article  MathSciNet  Google Scholar 

  34. Fushchych, W.I., Serov, M.I., Chopyk, V.I.: Conditional invariance and nonlinear heat equations (in Russian). Proc. Acad. of Sci. Ukr. 9, 17–21 (1988)

    Google Scholar 

  35. Fushchych, W., Shtelen, W., Serov, M.: Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics. Kluwer Academic Publishers, Dordrecht (1993)

    Book  MATH  Google Scholar 

  36. Knyazeva, I.V., Popov, M.D.: A system of two diffusion equations. In: CRC Handbook of Lie group Analysis of Differential Equations, vol. 1, pp. 171–176. CRC Press, Boca Raton (1994)

    Google Scholar 

  37. Liu, Q.M., Fokas, A.S.: Exact interaction of solitary waves for certain nonintegrable equations. J. Math. Phys. 37, 324–345 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lou, S.Y., Ruan H.Y.: Non-classical analysis and Painlevé property for the Kuperschmidt equations. J. Phys. A Math. Gen. 26, 4679–4688 (1993)

    Article  MATH  Google Scholar 

  39. Martinez, S.: The effect of diffusion for the multispecies Lotka–Volterra competition model. Nonlinear Anal. Real World Appl. 4, 409–436 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Murata, S.: Non-classical symmetry and Riemann invariants. Int. J. Non Linear Mech. 41, 242–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  42. Murray, J.D.: An Introduction I: Models and Biomedical Applications. Springer, Berlin (2003)

    Google Scholar 

  43. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  44. Namba, T.: Competition for space in a heterogeneous environment. J. Math. Biol. 27, 1–16 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems. Modern Perspectives, 2nd edn. Springer, Berlin (2001)

    Google Scholar 

  46. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  47. Olver, P., Rosenau, P.: Group-invariant solutions of differential equations. SIAM J. Appl. Math. 47, 263–278 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  48. Olver, P.J., Vorob’ev, E.M.: Nonclassical and conditional symmetries. In: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3, pp. 291–328. CRC Press, Boca Raton (1996)

    Google Scholar 

  49. Ovsiannikov, L.V.: The Group Analysis of Differential Equations. Academic, New York (1980)

    MATH  Google Scholar 

  50. Pliukhin, O.H.: Conditional symmetries and exact solutions of reaction-diffusion systems with power coefficients of diffusion (in Ukrainian). PhD thesis, Institute of Mathematics of NAS of Ukraine, Kyiv (2009)

    Google Scholar 

  51. Pliukhin, O.: Q-conditional symmetries and exact solutions of nonlinear reaction–diffusion systems. Symmetry 7, 1841–1855 (2015)

    Article  MathSciNet  Google Scholar 

  52. Pucci, E., Saccomandi, G.: On the weak symmetry groups of partial differential equations. J. Math. Anal. Appl. 163, 588–598 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sidorov, A.F., Shapeev, V.P., Yanenko, N.N.: The Method of Differential Constraints and Its Applications in Gas Dynamics (in Russian). Nauka, Novosibirsk (1984)

    MATH  Google Scholar 

  54. Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79, 83–99 (1979)

    Article  MathSciNet  Google Scholar 

  55. Torrisi, M., Tracinà, R.: Exact solutions of a reaction–diffusion system for Proteus mirabilis bacterial colonies. Nonlinear Anal. Real World Appl. 12, 1865–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  57. van Vuuren, J.H.: The existence of travelling plane waves in a general class of competition-diffusion systems. IMA J. Appl. Math. 55, 135–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wong, J.: The analysis of a finite element method for the three-species Lotka–Volterra competition-diffusion with Dirichlet boundary conditions. J. Comput. Appl. Math. 223, 421–437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhdanov, R.Z.: Conditional Lie-Backlund symmetry and reduction of evolution equations. J. Phys. A Math. Gen. 28, 3841–3850 (1995)

    Article  MATH  Google Scholar 

  60. Zhdanov, R.Z., Lahno, V.I.: Conditional symmetry of a porous medium equation. Physica D 122, 178–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zulehner, W., Ames, W.F.: Group analysis of a semilinear vector diffusion equation. Nonlinear Anal. 7, 945–69 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cherniha, R., Davydovych, V. (2017). Q-Conditional Symmetries of Reaction-Diffusion Systems. In: Nonlinear Reaction-Diffusion Systems. Lecture Notes in Mathematics, vol 2196. Springer, Cham. https://doi.org/10.1007/978-3-319-65467-6_2

Download citation

Publish with us

Policies and ethics