Skip to main content

Stochastic Upscaling via Linear Bayesian Updating

  • Chapter
  • First Online:
Multiscale Modeling of Heterogeneous Structures

Abstract

In this work we present an upscaling technique for multi-scale computations based on a stochastic model calibration technique. We consider a coarse scale continuum material model described in the framework of generalised standard materials. The model parameters are considered uncertain in this approach, and are approximated using random variables. The update or calibration of these random variables is performed in a Bayesian framework where the information from a deterministic fine scale model computation is used as observation. The proposed approach is independent w.r.t. the choice of models on coarse and fine scales. Simple numerical examples are shown to demonstrate the ability of the proposed approach to calibrate coarse-scale elastic and inelastic material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2006)

    Article  MATH  Google Scholar 

  2. Asokan, B.V., Zabaras, N.: A stochastic variational multiscale method for diffusion in heterogeneous random media. J. Comput. Phys. 218, 654–676 (2006). https://doi.org/10.1016/j.jcp.2006.02.026

    Article  MathSciNet  MATH  Google Scholar 

  3. Bobrowski, A.: Functional Analysis for Probability and Stochastic Processes. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  4. Clément, A., Soize, C., Yvonnet, J.: Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput. Methods Appl. Mech. Eng. 254, 61–82 (2013). https://doi.org/10.1016/j.cma.2012.10.016

    Article  MathSciNet  MATH  Google Scholar 

  5. Das, S., Ghanem, R.: Stochastic upscaling for inelastic material behavior from limited experimental data. In: Ghosh, S., Dimiduk, D. (eds.) Computational Methods for Microstructure-Property Relationships, pp. 443–468. Springer, Berlin (2011). https://doi.org/10.1007/978-1-4419-0643-4_12

  6. Demmie, P.N., Ostoja-Starzewski, M.: Local and nonlocal material models spatial randomness and impact loading. Arch. Appl. Mech. (2015). https://doi.org/10.1007/s00419-015-1095-3

    Google Scholar 

  7. Evensen, G.: Data Assimilation–the Ensemble Kalman Filter. Springer, Berlin (2009)

    MATH  Google Scholar 

  8. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Taylor, Francis (2014)

    MATH  Google Scholar 

  9. Gorguluarslan, R., Choi, S.-K.: A simulation-based upscaling technique for multiscale modeling of engineering systems under uncertainty. Int. J. Multiscale Comput. Eng. 12(2014), 549–566 (2014). https://doi.org/10.1615/IntJMultCompEng. 011519

    Article  Google Scholar 

  10. Graham-Brady, L., Arwade, S., Corr, D., Gutiérrez, M., Breysse, D., Grigoriu, M., Zabaras, N.: Probability and materials: from nano- to macro-scale: a summary. Probab. Eng. Mech. 21, 193–199 (2006). https://doi.org/10.1016/j.probengmech.2005.10.005

    Article  Google Scholar 

  11. Greene, M.S., Liu, Y., Chen, W., Liu, W.K.: Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory. Comput. Methods Appl. Mech. Eng. 200(1–4), 309–325 (2011). https://doi.org/10.1016/j.cma.2010.08.013

    Article  MathSciNet  MATH  Google Scholar 

  12. Halphen, B., Nguyen, Q.S.: Sur les matériaux standard généralisés. J. de Méc.14:39–63 (1975) Available from: http://hal.archives-ouvertes.fr/hal-00105514

  13. Halphen, B., Nguyen, Q.S.: Plastic and visco-plastic materials with generalized potential. Mech. Res. Commun. 1(1), 43–47 (1974). https://doi.org/10.1016/0093-6413(74)90034-2

    Article  MATH  Google Scholar 

  14. Han, W., Reddy, B.D.: Plasticity mathematical theory and numerical analysis, 2nd edn. In: Interdisciplanary Applied Mathematics, Springer Verlag, New York (2013)

    Google Scholar 

  15. Hawkins-Daarud, A., Prudhomme, S., van der Zee, K.G., Oden, J.T.: Bayesian calibration validation and uncertainty quantification of diffuse interface models of tumor growth. J. math. biol. 67(6–7), 1457–1485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ibrahimbegović, A., Fadi, G., Lotfi, C.: Classical plasticity and viscoplasticity models reformulated: theoretical basis and numerical implementation. Int. J. Numer Methods Eng. 42(8), 1499–1535 (1998)

    Google Scholar 

  17. Ibrahimbegović, A., Markovič, D., Gatuingt, F.: Constitutive model of coupled damage-plasticity and its finite element implementation. Revue Eur. des Elém. 12(4), 381–405 (2003)

    Google Scholar 

  18. Ibrahimbegovic, A., Matthies, H.G.: Probabilistic multiscale analysis of inelastic localized failure in solid mechanics. Comput. Assist Methods Eng Sci. 19:277–304 (2012). Available from: http://cames.ippt.gov.pl/pdf/CAMES_19_3_5.pdf

  19. Ibrahimbegović, A.: Nonlinear Solid Mechanics of Solid Mechanics and its Applications. vol. 160, Springer (2009)

    Google Scholar 

  20. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems (applied mathematical sciences) Vol. 160, 1st (ed.) Springer, Berlin (2004)

    Google Scholar 

  21. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Royal Statist. Series B 63(3), 425–464 (2001)

    Google Scholar 

  22. Koutsourelakis, P.: Stochastic upscaling in solid mechanics: an excercise in machine learning. J. Comput. Phys. 226, 301–325 (2007). https://doi.org/10.1016/j.jcp.2007.04.01

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Y., Greene, S.M., Chen, W., Dikin, D.A., Liu, W. K.: Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comput. Aided Des. 45(1), 65–76 (2013). https://doi.org/10.1016/j.cad.2012.03.007

  24. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, Chichester (1969)

    MATH  Google Scholar 

  25. Maso, D.G., de Simone, A., Mora, M.G.: Quasistatic evolution problems for linearly elastic? perfectly plastic materials. Arch. Rational Mech. Anal. 180, 237–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matthies, H.G., Ibrahimbegović, A.: Stochastic multiscale coupling of inelastic processes in solid mechanic. In: Papadrakakis, M., Stefanou, G. (eds.) Multiscale Modelling and Uncertainty Quantification of Materials and Structures, vol. 3, pp. 135–157. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-06331-7_9

  27. Matthies, H.G., Zander, E., Rosić, B.V., Litvinenko, A., Pajonk, O.: Inverse problems in a bayesian setting. In: Ibrahimbegović, A. (ed.) Computational Methods for Solids and Fluids—Multiscale Analysis Probability Aspects and Model Reduction Computational Methods in Applied Sciences, vol. 3, pp. 245–286. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-27996-1

  28. Matthies, H.G.: Computation of constitutive response in nonlinear computational mechanics. In: Wriggers, P., Wagner, W. (eds.) State of the Art. Springer, Berlin, Heidelberg (1991)

    Google Scholar 

  29. Matthies, H.G.: Uncertainty quantification with stochastic finite elements. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopaedia of Computational Mechanics. Wiley, Chichester (2007). https://doi.org/10.1002/0470091355.ecm071

  30. Nguyen, Q.S.: On the elastic plastic initial-boundary value problem and its numerical integration. Int. J. Numer. Methods Eng. 11(5), 817–832 (1977). https://doi.org/10.1002/nme.1620110505

    Article  MathSciNet  MATH  Google Scholar 

  31. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. Chapman and Hall, Boca Raton, FL (2008)

    MATH  Google Scholar 

  32. Pajonk, O., Rosić, B.V., Litvinenko, A., Matthies, H.G.: A deterministic filter for non-Gaussian Bayesian estimation-applications to dynamical system estimation with noisy measurements. Phys. D 241, 775–788 (2012). https://doi.org/10.1016/j.physd.2012.01.001

    Article  MATH  Google Scholar 

  33. Papoulis, A.: Probability Random Variables and Stochastic Processes, 3rd edn. McGraw-Hill Series in Electrical Engineering, McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  34. Rosić, B., Sýkora, J., Pajonk, O., Kučerová, A., Matthies, H.G.: Comparison of numerical approaches to Bayesian updating computational methods for solids and fluids—multiscale analysis, probability aspects, and model reduction. In: Ibrahimbegović, A. (ed.) Computational Methods in Applied Sciences, vol. 41, pp. 427–461. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-27996-1

  35. Rosić, B., Matthies, H.G.: Variational theory and computations in stochastic plasticity. Archi. Comput. Methods Eng. 22(3), 457–509 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Rosić, B.V., Litvinenko, A., Pajonk, O., Matthies, H.G.: Sampling-free linear Bayesian update of polynomial chaos representations. J. Comput. Phys. 231, 5761–5787 (2012). https://doi.org/10.1016/j.jcp.2012.04.044

    Article  MathSciNet  MATH  Google Scholar 

  37. Stefanou, G., Savvas, D., Papadrakakis, M.: Stochastic finite element analysis of composite structures based on material microstructure. Compos. Struct. 132, 384–392 (2015). https://doi.org/10.1016/j.compstruct.2015.05.044

    Article  Google Scholar 

  38. Suquet, P., Lahellec, N.: Elasto-plasticity of heterogeneous materials at different scale. Proced. IUTAM 10, 247–262 (2014). https://doi.org/10.1016/j.piutam.2014.01.021

    Article  Google Scholar 

  39. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  40. Yvonnet, J., Bonnet, G.: A consistent nonlocal scheme based on filters for the homogenization of heterogeneous linear materials with non-separated scales. Int. J. Solids Struct. 51(1), 196–209 (2014). https://doi.org/10.1016/j.ijsolstr.2013.09.023

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based upon work supported by DFG (Deutsche Forschungsgemeinschaft), Germany, and ANR (Agence Nationale de la Recherche), France, under the grant of the SELF-TUM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadiq M. Sarfaraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarfaraz, S.M., Rosić, B.V., Matthies, H.G., Ibrahimbegović, A. (2018). Stochastic Upscaling via Linear Bayesian Updating. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics