Skip to main content

Unified Approach to Sensitivity Analysis Based Automation of Multi-scale Modelling

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 86))

Abstract

Use of different kinds of multi-scale methods is limited with specifications of the problem to be solved. Standard two-level finite element homogenization approach \(\text {FE}^2\) is appropriate for problems with weakly coupled scales. If the difference between two scales is finite, or in the region of high gradients the \(\text {FE}^2\) multi-scale approach fails, then some sort of domain decomposition method can be applied. Our motivation was to create computational environment, where the multi-scale code is automatically derived and various types of multi-scale approaches can be freely mixed. The described approach uses an advanced feature of software tools AceGen and AceFEM, that is automatic generation of the finite element codes for analytical first and second order sensitivity analysis with respect to prescribed essential boundary conditions as a unifying factor. The automatic-differentiation-based formulation (ADB) enables unification and automation of various multi-scale approaches for an arbitrary nonlinear, time dependent, coupled problem (e.g. general finite strain plasticity).

This is a preview of subscription content, log in via an institution.

References

  1. Fèyel, F.: Multiscale \(\text{ FE }^2\) elastoviscoplastic analysis of composite structures. Comput. Mat. Sci. 16, 344–354 (1999)

    Article  Google Scholar 

  2. Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)

    Article  MATH  Google Scholar 

  3. Hudobivnik, B., Korelc, J.: Closed-form representation of matrix functions in the formulation of nonlinear material models. Finite Elem. Anal. Des. 111, 19–32 (2016)

    Article  MathSciNet  Google Scholar 

  4. Korelc, J.: Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput. Sci. 187, 231–248 (1997)

    Article  MATH  Google Scholar 

  5. Korelc, J.: Automation of primal and sensitivity analysis of transient coupled problems. Comput. Mech. 44, 631–649 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Korelc, J., Wriggers, P.: Automation of finite element methods. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  7. Korelc, J.: AceFEM and AceGen user manuals (2017). http://symech.fgg.uni-lj.si/

  8. Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modelling of heterogeneous materials. Comput. Mech. 27, 37–48 (2001)

    Article  MATH  Google Scholar 

  9. Lamut, M., Korelc, J., Rodič, T.: Multiscale modelling of heterogeneous materials. Mat. Tech. 45, 421–426 (2011)

    Google Scholar 

  10. Loehnert S., Mueller-Hoeppe D.S.: Multiscale methods for fracturing solids. In: Reddy B.D. (ed) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. IUTAM BookSeries, vol. 11. Springer, Dordrecht (2008)

    Google Scholar 

  11. Markovič, D., Ibrahimbegović, A.: On micro-macro interface conditions for micro scale based FEM for inelastic behaviour of heterogeneous materials. Comput. Methods Appl. Mech. Eng. 193, 5503–5523 (2004)

    Article  MATH  Google Scholar 

  12. Mathematica 11, Wolfram Research Inc., (2016). http://www.wolfram.com

  13. Miehe, C., Schotte, J., Schröder, J.: Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mat. Sci. 16, 372–382 (1999)

    Article  Google Scholar 

  14. Šolinc, U., Korelc, J.: A simple way to improved formulation of FE\(^2\) analysis. Comput. Mech. 56, 905–915 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Temizer, I., Wriggers, P.: On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput. Methods Appl. Mech. Eng. 198, 495–510 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zohdi, T.I., Wriggers, P.: An introduction to computational micromechanics. Springer, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The financial support for this work was obtained from the Slovenian Research Agency within the PhD Grant Agreement (annex No: 630-34/2015-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zupan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zupan, N., Korelc, J. (2018). Unified Approach to Sensitivity Analysis Based Automation of Multi-scale Modelling. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics