Skip to main content

A Method of Numerical Viscosity Measurement for Solid-Liquid Mixture

  • Chapter
  • First Online:
Multiscale Modeling of Heterogeneous Structures

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 86))

  • 1592 Accesses

Abstract

We present a space-time homogenization procedure for multiscale modeling of solid-liquid mixture. The derived mathematical model enables us to set up two separate governing equations at both macro- and micro-scales. The fluid in the macroscopic governing equation is teated as an equivalent homogeneous medium with average or homogenized viscosity and is regarded as an incompressible Newtonian fluid, whose motion is assumed to be governed by the Navier-Stokes equations. The microscopic equations of motion governing the coupling phenomenon of the fluid and solid particles in a certain local domain and are solved to determine the microscopic flow fields under adequate boundary and loading conditions. Then the macrosopic viscosity is determined as the quantity averaged over the microscopic domain and within a certain time interval. The numerical viscosity measurement (NVM) can be realized by this space-time homogenization procedure. A set of NVMs is presented to demonstrate that the solid-liquid mixture considered in this study possibly exhibits a macroscopic flow characteristics of a special type of non-Newtonian fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Benssousan, A., Lions, J.L., Papanicoulau, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    Google Scholar 

  2. Brooks, A.N., Hughes, T.J.R.: Streamline-upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. M. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coussot, P., Piau, J.M.: On the behaviour of fine mud suspentions. Rheol. Acta. 33, 175–184 (1994)

    Article  Google Scholar 

  4. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique. 29(1), 47–65 (1979)

    Google Scholar 

  5. Cundall,P. A., Strack O.D.L.: The distinct element method as a tool for research in granular media. Department of Civil and Mineral Engineering Report, Part 2, University of Minnesota, Minnesota (1979)

    Google Scholar 

  6. Holman, J.P.: Heat Transfer, vol. 207. McGraw-Hill (2002)

    Google Scholar 

  7. Hornung, U.: Homogenization and Porous Media. Springer, New York (1991)

    MATH  Google Scholar 

  8. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  9. Nakamura, T., Yim, S.C.: A non linear three-dimensional coupled fluid-sediment interaction model for large seabed deformation. J. Offshore. Mech. Arct. Eng. 133, 031103 (2011)

    Article  Google Scholar 

  10. Ontowirjo, B., Mano, A.: A turbulent and suspended sediment transport model for plunging breakers. Coast. Eng. J. 50, 349–367 (2008)

    Article  Google Scholar 

  11. Rouse, H.: Modern conceptions of the mechanics of turbulence. T. Am. Soc. Civil. Eng. 102, 463–543 (1937)

    Google Scholar 

  12. Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. In: Lecture Note in Physics, vol. 127. Springer, Berlin (1980)

    Google Scholar 

  13. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 146–159 (1994)

    Google Scholar 

  14. Terada, K., Asai, M., Yamagishi, M.: Finite cover method for linear and nonlinear analyses of heterogeneous solids. Int. J. Numer. Meth. Eng. 58(9), 1321–1346 (2003)

    Article  MATH  Google Scholar 

  15. Terada, K., Kurumatani, M.: Performance assessment of generalized elements in the finite cover method. Finite Elem. Anal. Des. 41, 111–132 (2004)

    Article  Google Scholar 

  16. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations: Adv. Appl. Mech. 28, 1–44 (1991)

    MATH  Google Scholar 

  17. Ushijima, S., Kuroda, N.: Multiphase modeling to predict finite deformations of elastic objects in free surface. In: Fluid Structure Interaction \(V\), vol. 105, pp. 34–45. WIT Press (2009)

    Google Scholar 

  18. Yamashita, K., Sugawara, D., Takahashi, T., Imamura, F., Saito, Y., Imato, Y., Kai, T., Uehara, H., Kato, T., Nakata, K., Saka, R., Nishikawa, A.: Numerical simulations of large-scale sediment transport caused by the 2011 Tohoku earthquake tsunami in Hirota Bay. South. Sanriku Coast. Coastal Eng. J. 58(4), 1640015, 1–28 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reika Nomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nomura, R., Terada, K., Takase, S., Moriguchi, S. (2018). A Method of Numerical Viscosity Measurement for Solid-Liquid Mixture. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics