Skip to main content

A Multiscale Framework for Thermoplasticity

  • Chapter
  • First Online:
Multiscale Modeling of Heterogeneous Structures

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 86))

  • 1543 Accesses

Abstract

The chapter describes a homogenization procedure for thermoplasticity problems. The proposed model is suitable for the finite strain regime and supports a very wide class of plasticity models. The methodology starts from the thermodynamically consistent thermoelastic framework already described in the literature. The latter framework is now extended to account for inelastic deformations. The problem is separated by means of the isothermal split into a mechanical and a thermal step, both at the macroscale and the microscale. As demonstrated in an example, the method does provide a way to successfully homogenize microscale variables as well as tangent operators. Finally, limitations of the approach are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Canadija, M., Mosler, J.: A variational formulation for thermomechanically coupled low cycle fatigue at finite strains. Int. J. Solids Struct. 100, 388–398 (2016)

    Article  Google Scholar 

  2. Canadija, M., Brnic, J.: Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int. J. Plast. 20, 1851–1874 (2004)

    Article  MATH  Google Scholar 

  3. Simo, J., Miehe, C.: Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)

    Article  MATH  Google Scholar 

  4. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171(3), 387–418 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Celigoj, C.: Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle. Int. J. Numer. Methods Eng. 71(1), 102–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Özdemir, I., Brekelmans, W., Geers, M.G.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods. Appl. Mech. Eng. 198(3), 602–613 (2008)

    Google Scholar 

  7. Sengupta, A., Papadopoulos, P., Taylor, R.L.: A multiscale finite element method for modeling fully coupled thermomechanical problems in solids. Int. J. Numer. Methods Eng. 91(13), 1386–1405 (2012)

    Google Scholar 

  8. Temizer, I., Wriggers, P.: Homogenization in finite thermoelasticity. J. Mech. Phys. Solids 59(2), 344–372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canadija, M., Mosler, J.: On the thermomechnaical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Solids Struct. 48(78), 1120–1129 (2011)

    Google Scholar 

  10. Mosler, J.: Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput. Methods Appl. Mech. Eng. 199, 2753–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mosler, J., Bruhns, O.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46, 1676–1685 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mosler, J., Bruhns, O.: On the implementation of rate-independent standard dissaptive solids at finite strain—variational constitutive updates. Comput. Methods Appl. Mech. Eng. 199, 417–429 (2010)

    Article  MATH  Google Scholar 

  13. Bleier, N., Mosler, J.: Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int. J. Numer. Methods Eng. 89(9), 1120–1143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids. 54, 401–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bartels, A., Bartel, T., Canadija, M., Mosler, J.: On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J. Mech. Phys. Solids 82, 218–234 (2015)

    Article  MathSciNet  Google Scholar 

  17. Temizer, I., Wriggers, P.: On a mass conservation criterion in micro-to-macro transitions. J. Appl. Mech. 75(5), 054503 (2008)

    Google Scholar 

  18. Miehe, C.: Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput. Methods Appl. Mech. Eng. 134(3), 223–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Simo, J., Hughes, T.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Croatian Science Foundation under the project no. 6876—Assessment of structural behaviour in limit state operating conditions. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Čanađija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Čanađija, M., Munjas, N. (2018). A Multiscale Framework for Thermoplasticity. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics