Skip to main content

A Model Reduction Technique in Space and Time for Fatigue Simulation

  • Chapter
  • First Online:
Multiscale Modeling of Heterogeneous Structures

Abstract

The simulation of mechanical responses of structures subjected to cyclic loadings for a large number of cycles remains a challenge. The goal herein is to develop an innovative computational scheme for fatigue computations involving non-linear mechanical behaviour of materials, described by internal variables. The focus is on the Large Time Increment (LATIN) method coupled with a model reduction technique, the Proper Generalized Decomposition (PGD). Moreover, a multi-time scale approach is proposed for the simulation of fatigue involving large number of cycles. The quantities of interest are calculated only at particular pre-defined cycles called the “nodal cycles” and a suitable interpolation is used to estimate their evolution at the intermediate cycles. The proposed framework is exemplified for a structure subjected to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. The combination of these techniques reduce the numerical cost drastically and allows to create virtual S-N curves for large number of cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Suresh, S.: Fatigue of Materials, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Wöhler, A.: Über die Festigkeitsversuche mit Eisen und Stahl. Zeitschrift für Bauwesen 20, 73–106 (1870)

    Google Scholar 

  3. Coffin, L.: The stability of metals under cyclic plastic strain. J. Basic Eng. 82, 671 (1960)

    Article  Google Scholar 

  4. Manson, S.S.: Fatigue: a complex subject-some simple approximations. Exp. Mech. 5, 193–226 (1965)

    Article  Google Scholar 

  5. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer (2005)

    Google Scholar 

  6. Gerber, H.: Bestimmung der zulässigen Spannungen in Eisen-Constructionen. Zeitschrift des Bayerischen Architekten- und Ingenieur-Vereins 6, 101–110 (1874)

    Google Scholar 

  7. Goodman, J.: Mechanics Applied to Engineering. Longman, Green and Company, London (1899)

    MATH  Google Scholar 

  8. Soderberg, C.R.: Factor of safety and working stress. Trans. Am. Soc. Mech. Eng. 52, 13–28 (1939)

    Google Scholar 

  9. Palmgren, A.: Die Lebensdauer von Kugellagern. Zeitschrift des Vereins Deutscher Ingenieure 68, 339–341 (1924)

    Google Scholar 

  10. Miner, M.A.: Cumulative damage in fatigue. J. Appl. Mech. 12, 159–164 (1945)

    Google Scholar 

  11. Marco, S.M., Starkey, W.L.: A concept of fatigue damage. Trans. ASME 32(76), 627 (1954)

    Google Scholar 

  12. Neuber, H.: Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J. Appl. Mech. 28(4), 544–550 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crossland, B.: Effect of large hydrostatic pressure on the torsional fatigue strength of an alloy steel. In: Proceedings of the International Conference on Fatigue of Metals, pp. 138–149. IME London (1956)

    Google Scholar 

  14. Sines, G.: Failure of materials under combined repeated stresses with superimposed static stresses. Technical report, National Advisory Committee for Aeronautics, Washington DC (1955)

    Google Scholar 

  15. Dang, V.K.: Sur la résistance à la fatigue des métaux. In: Sciences Technique Armement, vol. 47 (1973)

    Google Scholar 

  16. Chaboche, J.-L., Lesne, P.-M.: A non-linear continuous fatigue damage model. Fatigue Fract. Eng. Mater. Struct. 11(1), 1–17 (1988)

    Article  Google Scholar 

  17. Lemaitre, J., Sermage, J.P., Desmorat, R.: A two scale damage concept applied to fatigue. Int. J. Fract. 97(1–4), 67–81 (1999)

    Article  Google Scholar 

  18. Pirondi, A., Bonora, N., Steglich, D., Brocks, W., Hellmann, D.: Simulation of failure under cyclic plastic loading by damage models. Int. J. Plast. 22, 2146–2170 (2006)

    Article  MATH  Google Scholar 

  19. Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–534 (1963)

    Article  Google Scholar 

  20. Cui, W.: A state-of-the-art review on fatigue life prediction methods for metal structures. J. Mar. Sci. Technol. 7(1), 43–56 (2002)

    Article  Google Scholar 

  21. Santecchia, E., Hamouda, A.M.S., Musharavati, F., Zalnezhad, E., Cabibbo, M., El Mehtedi, M., Spigarelli, S.: A review on fatigue life prediction methods for metals. Adv. Mater. Sci. Eng. 2016(26) (2016)

    Google Scholar 

  22. Prud’homme, C., Rovas, D., Veroyand, K., Machiels, L., Maday, Y., Patera, A., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2002)

    Article  Google Scholar 

  23. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  24. Kerschen, G., Golinval, J.-C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41(1), 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rozza, G.: Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity. Appl. Numer. Math. 55, 403–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ladevèze, P.: Nonlinear computational structural mechanics. In: Mechanical Engineering Series. Springer, New York (1999)

    Google Scholar 

  27. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newto. Fluid Mech. 3(139), 153–176 (2006)

    Article  MATH  Google Scholar 

  28. Chinesta, F., Ladevèze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Meth. Eng. 18, 395–404 (2011)

    Article  Google Scholar 

  29. Ryckelynck, D., Missoum Benziane, D., Cartel, S., Besson, J.: A robust adaptive model reduction method for damage simulations. Comput. Mater. Sci. 50, 1597–1605 (2011)

    Google Scholar 

  30. Kerfriden, P., Gosselet, P., Adhikari, S., Bordas, S.P.A.: Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model reduction for highly nonlinear mechanical problems. Comput. Meth. Appl. Mech. Eng. 200, 850–866 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Metoui, S., Prulière, E., Ammar, A., Dau, F., Iordanoff, I.: The proper generalized decomposition for the simulation of delamination using cohesive zone model. Int. J. Numer. Meth. Eng. 99(13), 1000–1022 (2014)

    Article  MATH  Google Scholar 

  32. El Halabi, F., González, D., Sanz-Herrera, J.A., Doblaré, M.: A PGD-based multiscale formulation for non-linear solid mechanics under small deformations. Comput. Meth. Appl. Mech. Eng. 305, 806–826 (2016)

    Article  MathSciNet  Google Scholar 

  33. Ladevèze, P., Nouy, A.: On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput. Meth. Appl. Mech. Eng. 192, 3061–3087 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ladevèze, P., Néron,D., Passieux, J.-C.: On Multiscale Computational Mechanics with Time-space Homogenization. In: Fish, J. (ed.) pp. 247–282. Oxford University Press (2009)

    Google Scholar 

  35. Relun, N., Néron, D., Boucard, P.-A.: A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput. Mech. 51, 83–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., Ladevèze, P.: A LATIN-based model reduction approach for the simulation of cycling damage. Comput. Mech. (2017) (submitted)

    Google Scholar 

  37. Cojocaru, D., Karlsson, A.M.: A simple numerical method of cycle jumps for cyclically loaded structures. Int. J. Fatigue 28(12), 1677–1689 (2006)

    Article  Google Scholar 

  38. Nesnas, K., Saanouni, K.: A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading path. Revue Européenne des Éléments Finis 9, 865–891 (2000)

    Article  MATH  Google Scholar 

  39. Lesne, P.-M., Savalle, S.: An efficient cycle jump technique for viscoplastic structures calculations involving large number of cycles. In: Proceedings of 2nd International Conference on Computational Plasticity, pp. 591–602 (1989)

    Google Scholar 

  40. Guennouni, T., Aubry, D.: Réponse homogénéisée en temps de structures sous chargements cycliques. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers. Sciences de la Terre 303(20), 1765–1768 (1986)

    MathSciNet  MATH  Google Scholar 

  41. Oskay, C., Fish, J.: Fatigue life prediction using two-scale temporal asymptotic homogenization. Int. J. Numer. Meth. Eng. 61, 329–359 (2004)

    Google Scholar 

  42. Cognard, J.-Y., Ladevèze, P.: A large time increment approach for cyclic viscoplasticity. Int. J. Plast. 9(2), 141–157 (1993)

    Article  MATH  Google Scholar 

  43. Ladevèze, P.: Separated representations and PGD-based model reduction. In: Fundamentals and Applications, Chapter PGD in Linear and Nonlinear Computational Solid Mechanics, pp. 91–152. Springer Vienna (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., Ladevèze, P. (2018). A Model Reduction Technique in Space and Time for Fatigue Simulation. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics