Skip to main content

Extraction of Nanocellulose from Waste Jute Fibers and Characterization of Mechanical and Dynamic Mechanical Behavior of Nanocellulose-Coated Jute/Green Epoxy Composites

  • Chapter
  • First Online:
Sustainable Jute-Based Composite Materials

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The work presented in this chapter was aimed to explore the effect of nanocellulose coating on the mechanical and thermomechanical properties of jute/green epoxy composites. Cellulose was purified from waste jute fibers and converted to nanocellulose by acid hydrolysis, and subsequently, 3, 5, and 10 wt% of nanocellulose suspensions were coated over woven jute reinforcement to prepare composites. The surface topologies of treated jute fibers, jute cellulose nanofibrils (CNF), nanocellulose-coated jute fabrics, and fractured surfaces of composites were characterized by SEM. Composites were evaluated for tensile, flexural, fatigue, fracture toughness, and dynamic mechanical properties. The results revealed the improvement in composite properties such as tensile modulus, flexural strength, flexural modulus, fatigue life, and fracture toughness with the increase in the concentration of nanocellulose coating over jute reinforcement except the decrease in tensile strength. The storage modulus was increased, and tangent delta peaks were reduced for nanocellulose-coated jute composites as presented by DMA results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamri, H. & Low, I. M. (2012) Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC, Journal of applied polymer science, 126(S1).

    Google Scholar 

  • Beg, M. D. H., & Pickering, K. L. (2008). Accelerated weathering of unbleached and bleached kraft wood fibre reinforced polypropylene composites. Polymer Degradation and Stability, 93(10), 1939–1946.

    Article  Google Scholar 

  • Brunner, A., Necola, A., Rees, M., Gasser, P., Kornmann, X., Thomann, R., et al. (2006). The influence of silicate-based nano-filler on the fracture toughness of epoxy resin. Engineering Fracture Mechanics, 73(16), 2336–2345.

    Article  Google Scholar 

  • Carvelli, V., Betti, A., & Fujii, T. (2016). Fatigue and Izod impact performance of carbon plain weave textile reinforced epoxy modified with cellulose microfibrils and rubber nanoparticles. Composites Part A: Applied Science and Manufacturing, 84, 26–35.

    Article  Google Scholar 

  • Chirayil, C. J., Mathew, L., Hassan, P., Mozetic, M., & Thomas, S. (2014). Rheological behaviour of nanocellulose reinforced unsaturated polyester nanocomposites. International Journal of Biological Macromolecules, 69, 274–281.

    Article  Google Scholar 

  • Cho, M.-J., & Park, B.-D. (2011). Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. Journal of Industrial and Engineering Chemistry, 17(1), 36–40.

    Article  Google Scholar 

  • Dong, S., & Gauvin, R. (1993). Application of dynamic mechanical analysis for the study of the interfacial region in carbon fiber/epoxy composite materials. Polymer Composites, 14(5), 414–420.

    Article  Google Scholar 

  • Júnior, J. H. S. A., Júnior, H. L. O., Amico, S. C., & Amado, F. D. R. (2012). Study of hybrid intralaminate curaua/glass composites. Materials and Design, 42, 111–117.

    Article  Google Scholar 

  • Kale, B. M., Wiener, J., Militky, J., Rwawiire, S., Mishra, R., & Jabbar, A. (2016a). Dyeing and stiffness characteristics of cellulose-coated cotton fabric. Cellulose, 23(1), 981–992.

    Article  Google Scholar 

  • Kale, B. M., Wiener, J., Militky, J., Rwawiire, S., Mishra, R., Jacob, K. I., et al. (2016b). Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydrate Polymers, 150, 107–113.

    Article  Google Scholar 

  • Kargarzadeh, H., Sheltami, R. M., Ahmad, I., Abdullah, I., & Dufresne, A. (2015). Cellulose nanocrystal: A promising toughening agent for unsaturated polyester nanocomposite. Polymer, 56, 346–357.

    Article  Google Scholar 

  • Lu, J., Wang, T., & Drzal, L. T. (2008). Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Composites Part A: Applied Science and Manufacturing, 39(5), 738–746.

    Article  Google Scholar 

  • Martínez-Hernández, A., Velasco-Santos, C., De-Icaza, M., & Castano, V. M. (2007). Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Composites Part B: Engineering, 38(3), 405–410.

    Article  Google Scholar 

  • Meloun, M., & Militky, J. (2011). Statistical data analysis: A practical guide. Cambridge, United Kingdom: Woodhead Publishing Limited.

    Book  Google Scholar 

  • Mukherjee, A., Ganguly, P., & Sur, D. (1993). Structural mechanics of jute: the effects of hemicellulose or lignin removal. Journal of the Textile Institute, 84(3), 348–353.

    Article  Google Scholar 

  • Pothan, L. A., Oommen, Z., & Thomas, S. (2003). Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology, 63(2), 283–293.

    Article  Google Scholar 

  • Raquez, J.-M., Murena, Y., Goffin, A.-L., Habibi, Y., Ruelle, B., DeBuyl, F., et al. (2012). Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Composites Science and Technology, 72(5), 544–549.

    Article  Google Scholar 

  • Ray, D., Sarkar, B., Das, S., & Rana, A. (2002). Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres. Composites Science and Technology, 62(7), 911–917.

    Article  Google Scholar 

  • Ray, D., Sarkar, B. K., Rana, A., & Bose, N. R. (2001). Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science, 24(2), 129–135.

    Article  Google Scholar 

  • Samir, M. A. S. A., Alloin, F., Sanchez, J.-Y., & Dufresne, A. (2004). Cellulose nanocrystals reinforced poly (oxyethylene). Polymer, 45(12), 4149–4157.

    Article  Google Scholar 

  • Terinte, N., Ibbett, R., & Schuster, K. C. (2011). Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 89, 118–131.

    Google Scholar 

  • Wetzel, B., Rosso, P., Haupert, F., & Friedrich, K. (2006). Epoxy nanocomposites–fracture and toughening mechanisms. Engineering Fracture Mechanics, 73(16), 2375–2398.

    Article  Google Scholar 

  • Zhao, S., Schadler, L. S., Hillborg, H., & Auletta, T. (2008). Improvements and mechanisms of fracture and fatigue properties of well-dispersed alumina/epoxy nanocomposites. Composites Science and Technology, 68(14), 2976–2982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Jabbar .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Jabbar, A. (2017). Extraction of Nanocellulose from Waste Jute Fibers and Characterization of Mechanical and Dynamic Mechanical Behavior of Nanocellulose-Coated Jute/Green Epoxy Composites. In: Sustainable Jute-Based Composite Materials. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-65457-7_5

Download citation

Publish with us

Policies and ethics