Skip to main content

Diluted Magnetic Semiconductors: Basic Physics and Optical Properties

  • Chapter
  • First Online:

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 157))

Abstract

Diluted Magnetic Semiconductors (DMS) a class of magnetic materials, which fill the gap between ferromagnets and semiconductors (Galazka, Inst Phys Conf Ser 43, 133, 1979, [1]). In the early literature these DMS were often named semimagnetic semiconductors , because they are midway between non magnetic and magnetic materials. DMS are semiconductor compounds (A\(_{1-x}\)M\(_x\)B) in which a fraction x of the cations is substituted by magnetic impurities , thereby making the host semiconductor (AB) magnetic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This term can be misleading. Since Landé factors have different signs for s and d electrons in (Cd,Mn)Te, parallel spins means antiparallel magnetic moments. A consequence is the field-dependance of Larmor frequency of conduction electrons in a sample with a low Mn content, see Fig. 14.17.

  2. 2.

    A negative \(\beta \) means also an “antiferromagnetic” coupling between the Mn spins and a gas of holes occupying the upper levels of the valence band (both spin and energy are reversed by switching from electrons to holes). But the magnetic moments of antiparallel spins can be parallel if the effective Landé factors have opposite signs, as in (Cd,Mn)Te. Note that the exchange parameter \(\beta \) applies to the spin of the hole, not its total angular momentum.

  3. 3.

    Note that in literature the definition of \(J_{ij}\) may vary (sign and factor 2 which comes from a double summation over i and j on an ensemble of sites).

  4. 4.

    The modified Curie-Weiss law and the magnetization steps described in this section are caused by the interactions between two Mn spins having isotropic g-factor. Very similar deviations from the Brillouin function are also observed for isolated spins with anisotropic g-factor (non \(d^5\) ions), which exhibit level crossings already for a single spin.

  5. 5.

    The exchange interactions with distant Mn atoms are weak, but nevertheless they slightly shift the magnetization steps and must be taken into account for a precise determination of \(J_1\).

  6. 6.

    An equivalent expression of the free energy is given in [42].

  7. 7.

    Magnetic impurities with a non-\(d^{5}\) configuration have a non-zero orbital momentum. This usually gives rise to a more complex, anisotropic behavior of the magnetization, and also to a complex, but different, behavior of the giant Zeeman effect [65, 66]. The Jahn-Teller effect can significantly alter this anisotropy [50].

  8. 8.

    These large values of the giant spin splitting are often cast into an appealing but sometimes misleading form, that of an effective Landé factor which can be up to several hundreds. One must keep in mind that this g-factor is strongly temperature dependent, and that the giant Zeeman effect is highly non-linear in field.

  9. 9.

    This can be shown by introducing the three inequivalent directions in the expression of the free energy given by (14.14).

  10. 10.

    Assuming an electron gas confined in a quantum well with infinite barriers.

  11. 11.

    This is a classical effect, which can be described from the Bloch equations of the coupled hole and Mn spins. One can also start from the expression of the free energy (14.14) for Mn coupled to heavy-holes

    $$\begin{aligned} F(\mathbf {M},\mathbf {m})= \frac{M^2}{2\chi _{Mn}}-\mathbf {M}\cdot \mathbf {B}+\frac{m_x^2}{2\chi _h}-\frac{IM_{x}m_x}{(g\mu _B)(g_e\mu _B)},{(14.26)} \end{aligned}$$

    and calculating \(m_x\) so as to minimize the free energy (i.e., assuming a collective Mn-carrier behavior). For small tilt angle \(\theta \) the energy of the Mn system can then be expressed quantum mechanically using the creation and annihilation operators \(\hat{A}^\dag = [(1-\zeta )^{1/2}\hat{X}+i(1-\zeta )^{-1/2}\hat{P}]/\sqrt{2}\) and \(\hat{A}= [(1-\zeta )^{1/2}\hat{X}-i(1-\zeta )^{-1/2}\hat{P}]/\sqrt{2}\), with \(\zeta =I^2\chi _{Mn}\chi _h/(g\mu _B)^2(g_h\mu _B)^2\) the key parameter which goes to unity at the ferromagnetic transition. One finds the familiar expression for the quantum harmonic oscillator \(H=g\mu _BB(1-\zeta )^{1/2}(\hat{A}^\dag \hat{A}+1/2)\), the frequency being renormalized by \((1-\zeta )^{1/2}\).

  12. 12.

    This is a direct indication that the positive sign of the exchange integral \(\alpha \) results into an antiparallel configuration of the s and d magnetic moments in CdMnTe. At even larger field, the Larmor frequency of the conduction electrons vanishes: this is not a soft mode, but it provides a good configuration for a study of skyrmions.

  13. 13.

    The free energy reads

    $$\begin{aligned} F(\mathbf {M},\mathbf {m})= -(\mathbf {M}+\mathbf {m})\cdot \mathbf {B}-\frac{I\mathbf {M}\cdot \mathbf {m}}{(g\mu _B)(g_e\mu _B)}.{(14.27)} \end{aligned}$$

    For small tilt angles of \(\mathbf {M}\) and \(\mathbf {m}\), the energy can be expanded up to quadratic terms using the conjugated operators introduced before \(H=\frac{1}{2}(g_e\mu _BB+\varDelta )(\hat{x}^2+\hat{p}^2)+\frac{1}{2}(g\mu _BB+K)(\hat{X}^2+\hat{P}^2)-(K\varDelta )^{1/2}(\hat{X}\hat{x}+\hat{P}\hat{p})\) with the notations \(\varDelta =IM/g\mu _B\) and \(K=Im/g_e\mu _B\) for the Overhauser and (EPR) Knight shifts respectively. In terms of annihilation and creation operators this becomes \(H=\hbar \omega _e(\hat{a}\hat{a}^\dag +1/2)+\hbar \omega _{Mn}(\hat{A}\hat{A}^\dag +1/2)-\sqrt{K\varDelta }(\hat{A}\hat{a}^\dag +\hat{A}^\dag \hat{a})+...\) with \(\hbar \omega _e=g_e\mu _BB+\varDelta \) and \(\hbar \omega _{Mn}=g\mu _BB+K\). This expression of two coupled harmonic oscillators shows that the electron and Mn spin-flip excitations are coupled and the anticrossing energy is given by \(2\sqrt{K\varDelta }\) [162]. Note that, as for the soft mode, a classical description in terms of Bloch equations give the same result.

  14. 14.

    Care must be taken in the interpretation of Kerr or Faraday signal in magnetic materials, due complications introduced by dichroic bleaching. For instance the Faraday rotation angle is \(\theta _F \propto QM\), where Q is a magneto-optical coefficient. After excitation by a laser pulse the total variation of Faraday rotation contains two terms \(\delta \theta _F \propto M\delta Q+Q\delta M\), where the first term corresponds to dichroic bleaching, i.e. a change of magneto-optical properties due to photoexcited carriers, and the second term contains the information on magnetization dynamics [168,169,170].

  15. 15.

    If the effective field changes slowly with respect to the Larmor period, the magnetization follows adiabatically the total field direction and does not precess.

  16. 16.

    In magnetic quantum wells the coherent rotation is mainly induced by photocreated holes. The hole spin is generally locked along the growth axis due to confinement and strain, while the electron spin precesses rapidly. It is therefore possible to cancel the electron spin polarization using a second pump pulse delayed with respect to the first one by a half of the electron Larmor period. The amplitude of the tilted magnetization appears to be insensitive to the delay between the two pump pulses, indicating that the coherent rotation is induced mainly by the hole spin polarization [179].

  17. 17.

    In itinerant ferromagnets the distinction between carriers and spins is rather artificial as itinerant electrons contribute both to transport and magnetism (see [186]).

References

  1. R.R. Galazka, Inst. Phys. Conf. Ser. 43, 133 (1979)

    Google Scholar 

  2. E.L. Nagaev, Phys. Rep. 346, 387 (2001)

    Article  ADS  Google Scholar 

  3. J. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

  4. J.K. Furdyna, J. Kossut (eds.), Diluted Magnetic Semiconductors, vol. 25, Semiconductors and Semimetals (Academic Press, New York, 1988)

    Google Scholar 

  5. T. Dietl, in Handbook on Semiconductors, vol. 3b, ed. by T.S. Moss (North-Holland, Amsterdam, 1994), p. 1251

    Google Scholar 

  6. J. Blinowski, P. Kacman, T. Dietl, Materials Research Society Symposium Proceeding, vol. 690, F6.9, ed. by T.J. Klemmer, J.Z. Sun, A. Fert (MRS 2002), arXiv:cond-mat/0201012

  7. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)

    Article  ADS  Google Scholar 

  8. D. Ferrand, J. Cibert, A. Wasiela et al., Phys. Rev. B 63, 85201 (2001)

    Article  ADS  Google Scholar 

  9. T. Jungwirth, J. Sinova, A.H. MacDonald et al., Phys. Rev. B 76, 125206 (2007)

    Article  ADS  Google Scholar 

  10. S.-H. Wei, A. Zunger, Phys. Rev. B 35, 2340 (1987)

    Article  ADS  Google Scholar 

  11. J.P. Lascaray, J. Diouri, M. El Amrani et al., Solid State Commun. 47, 709 (1983)

    Article  ADS  Google Scholar 

  12. Y.R. Lee, A.K. Ramdas, Solid State Commun. 51, 861 (1984)

    Article  ADS  Google Scholar 

  13. Y.R. Lee, A.K. Ramdas, R.L. Aggarwal, Phys. Rev. B 33, 7383 (1986)

    Article  ADS  Google Scholar 

  14. A.K. Bhattacharjee, Phys. Rev. B 58, 15660 (1998)

    Article  ADS  Google Scholar 

  15. A.K. Bhattacharjee, G. Fishman, B. Coqblin, Phys. B 117–118, 449 (1983)

    Article  Google Scholar 

  16. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966)

    Article  ADS  Google Scholar 

  17. I.A. Merkulov, D.R. Yakovlev, A. Keller et al., Phys. Rev. Lett. 83, 1431 (1999)

    Article  ADS  Google Scholar 

  18. B.E. Larson, H. Ehrenreich, J. Appl. Phys. 67, 5084 (1990)

    Article  ADS  Google Scholar 

  19. P.W. Anderson, in Solid States Physics, vol. 14, ed. by F. Seitz, D. Turnbull (Academic, New York, 1963)

    Google Scholar 

  20. J. Blinowski, P. Kacman, J.A. Majewski, Phys. Rev. B 53, 9524 (1996)

    Article  ADS  Google Scholar 

  21. E. Sarigiannidou, F. Wilhelm, E. Monroy et al., Phys. Rev. B 74, 041306(R) (2006)

    Article  ADS  Google Scholar 

  22. S. Stefanowicz, G. Kunert, C. Simserides et al., Phys. Rev. B 88, 081201 (2013)

    Article  ADS  Google Scholar 

  23. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  ADS  Google Scholar 

  24. M.A. Rudermann, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  25. T. Dietl, A. Haury, Y. Merle d’Aubigné, Phys. Rev. B 55, R3347 (1997)

    Google Scholar 

  26. M.A. Novak, O.G. Symko, D.J. Zheng et al., J. Appl. Phys. 57, 3418 (1985)

    Article  ADS  Google Scholar 

  27. M.A. Novak, O.G. Symko, D.J. Zheng et al., Phys. Rev. B 33, 6391 (1986)

    Article  ADS  Google Scholar 

  28. B. Leclercq, C. Rigaux, Phys. Rev. B 48, 13573 (1993)

    Article  ADS  Google Scholar 

  29. S.B. Oseroff, Phys. Rev. B 25, 6584 (1982)

    Article  ADS  Google Scholar 

  30. J. Spałek, A. Lewicki, Z. Tarnawski et al., Phys. Rev. B 33, 3407 (1986)

    Article  ADS  Google Scholar 

  31. J.A. Gaj, R. Planel, G. Fishman, Solid State Commun. 29, 435 (1979)

    Article  ADS  Google Scholar 

  32. J.A. Gaj, W. Grieshaber, C. Bodin, J. Cibert et al., Phys. Rev. B 50, 5512 (1994)

    Article  ADS  Google Scholar 

  33. Y. Shapira, S. Foner, D.H. Ridgley et al., Phys. Rev. B 30, 4021 (1984)

    Article  ADS  Google Scholar 

  34. W. Grieshaber, A. Haury, J. Cibert et al., Phys. Rev. B 53, 4891 (1996)

    Article  ADS  Google Scholar 

  35. J.M. Fatah, T. Piorek, P. Harrison et al., Phys. Rev. B 49, 10, 341 (1994)

    Google Scholar 

  36. R.L. Aggarwal, S.N. Jasperson, P. Becla et al., Phys. Rev. B 32, 5132 (1985)

    Article  ADS  Google Scholar 

  37. R.R. Gałazka, W. Dobrowolski, J.P. Lascaray et al., J. Magn. Magn. Mater. 72, 174 (1988)

    Article  ADS  Google Scholar 

  38. J.P. Lascaray, A. Bruno, M. Nawrocki et al., Phys. Rev. B 35, 6860 (1987)

    Article  ADS  Google Scholar 

  39. J.P. Lascaray, M. Nawrocki, J.M. Broto et al., Solid State Commun. 61, 401 (1987)

    Article  ADS  Google Scholar 

  40. Y. Shapira, S. Foner, P. Becla et al., Phys. Rev. B 33, 356 (1986)

    Article  ADS  Google Scholar 

  41. C. Zener, Phys. Rev. 81, 440 (1951); Phys. Rev. 83, 299 (1951)

    Google Scholar 

  42. T. Dietl, Semimagnetic Semiconductors and Diluted Magnetic Semiconductors. Ettore Majorana International Science Series, ed. by M. Averous, M. Balkanski (1990)

    Google Scholar 

  43. P. Kossacki, D. Ferrand, A. Arnoult et al., Phys. E 6, 709 (2000)

    Article  Google Scholar 

  44. J.A. Gaj, J. Ginter, R.R. Gałazka, Phys. Status Solidi B 89, 655 (1978)

    Article  ADS  Google Scholar 

  45. T. Dietl, H. Ohno, F. Matsukura, Phys. Rev. B 63, 195205 (2001)

    Article  ADS  Google Scholar 

  46. T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187 (2014)

    Article  ADS  Google Scholar 

  47. C. Timm, J. Phys.: Condens. Matter 15, R1865 (2003)

    ADS  Google Scholar 

  48. A. Kaminski, S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002)

    Google Scholar 

  49. A. Wołos, A. Wysmolek, M. Kaminska et al., Phys. Rev. B 70, 245202 (2004)

    Article  ADS  Google Scholar 

  50. S. Marcet, D. Ferrand, D. Halley et al., Phys. Rev. B 74, 125201 (2006)

    Article  ADS  Google Scholar 

  51. E. Piskorska-Hommel, M.J. Winiarski, G. Kunert et al., J. Appl. Phys. 117, 065702 (2015)

    Article  ADS  Google Scholar 

  52. R. Nelson, T. Berlijn, J. Moreno et al., Phys. Rev. Lett. 115, 197203 (2015)

    Article  ADS  Google Scholar 

  53. G. Bouzerar, T. Ziman, J. Kudrnovský, Europhys. Lett. 69, 812 (2005)

    Article  ADS  Google Scholar 

  54. K. Sato, L. Bergqvist, J. Kudrnovský et al., Rev. Mod. Phys. 82, 1633 (2010)

    Article  ADS  Google Scholar 

  55. G. Bouzerar, R. Bouzerar, Comptes Rendus Physique 16, 731 (2015)

    Article  ADS  Google Scholar 

  56. C. Simserides, J.A. Majewski, K.N. Trohidou, T. Dietl, EPJ Web Conf. 75, 01003 (2014)

    Article  Google Scholar 

  57. T. Dietl, Nat. Mater. 9, 965 (2010)

    Article  ADS  Google Scholar 

  58. K. Sato, H. Katayama-Yoshida, P.H. Dederichs, Jpn. J. Appl. Phys. 44, L948 (2005)

    Article  ADS  Google Scholar 

  59. S. Kuroda, N. Nisizawa, K. Takita et al., Nat. Mater. 6, 440 (2007)

    Article  ADS  Google Scholar 

  60. A. Bonanni, A. Navarro-Quezada, T. Li et al. Phys. Rev. Lett. 101, 135502 (2008)

    Google Scholar 

  61. P. Nam Hai, S. Ohya, M. Tanaka, S.E. Barnes, S. Maekawa. Nature 458, 489 (2009)

    Google Scholar 

  62. M. Jamet, A. Barski, T. Devillers et al., Nat. Mater. 5, 653 (2006)

    Article  ADS  Google Scholar 

  63. E. Arras, F. Lanon, I. Slipukhina et al., Phys. Rev. B 85, 115204 (2012)

    Article  ADS  Google Scholar 

  64. T. Dietl, K. Sato, T. Fukushima et al., Rev. Mod. Phys. 87, 1311 (2015)

    Article  ADS  Google Scholar 

  65. A.K. Bhattacharjee, Phys. Rev. B 46, 5266 (1992)

    Article  ADS  Google Scholar 

  66. J. Blinowski, P. Kacman, Phys. Rev. B 46, 12298 (1992)

    Article  ADS  Google Scholar 

  67. T. Mizokawa, A. Fujimori, Phys. Rev. B 56, 6669 (1997)

    Article  ADS  Google Scholar 

  68. T. Mizokawa, T. Nambu, A. Fujimori et al., Phys. Rev. B 65, 085209 (2002)

    Article  ADS  Google Scholar 

  69. A. Twardowski, M. von Ortenberg, M. Demianiuk, R. Pauthenet, Solid State Commun. 51, 849 (1984)

    Article  ADS  Google Scholar 

  70. W. Pacuski et al., APS March Meeting 2007

    Google Scholar 

  71. W. Pacuski, D. Ferrand, J. Cibert et al., Phys. Rev. B 73, 035214 (2006)

    Article  ADS  Google Scholar 

  72. W. Pacuski, D. Ferrand, P. Kossacki et al., Acta Phys. Polonica A 110, 303 (2006)

    Article  ADS  Google Scholar 

  73. C. Benoît à la Guillaume, D. Scalbert, T. Dietl, Phys. Rev. B 46, 9853 (1992)

    Google Scholar 

  74. J. Tworzydło, Phys. Rev. B 50, 14591 (1994)

    Article  ADS  Google Scholar 

  75. T. Dietl, Phys. Rev. B 77, 085208 (2008)

    Article  ADS  Google Scholar 

  76. W. Pacuski, P. Kossacki, D. Ferrand et al., Phys. Rev. Lett. 100, 037204 (2008)

    Article  ADS  Google Scholar 

  77. K. Ando, Appl. Phys. Lett. 82, 100 (2003)

    Article  ADS  Google Scholar 

  78. J.-G. Rousset, J. Papierska, W. Pacuski et al., Phys. Rev. B 88, 115208 (2013)

    Article  ADS  Google Scholar 

  79. J. Szczytko, W. Bardyszewski, A. Twardowski, Phys. Rev. B 64, 075306 (2001)

    Article  ADS  Google Scholar 

  80. P. Kossacki, J. Cibert, D. Ferrand et al., Phys. Rev. B 60, 16018 (1999)

    Article  ADS  Google Scholar 

  81. A. Haury, A. Wasiela, A. Arnoult et al., Phys. Rev. Lett. 79, 511 (1997)

    Article  ADS  Google Scholar 

  82. H. Boukari, P. Kossacki, M. Bertolini et al., Phys. Rev. Lett. 88, 207204 (2002)

    Article  ADS  Google Scholar 

  83. P. Kossacki, W. Pacuski, W. Maslana et al., Phys. E 21, 943 (2004)

    Article  Google Scholar 

  84. A.A. Maksimov, G. Bacher, A. McDonald et al., Phys. Rev. B 62, 7767 (2000)

    Article  ADS  Google Scholar 

  85. J. Seufert, G. Bacher, M. Scheibner et al., Phys. Rev. Lett. 88, 027402 (2002)

    Article  ADS  Google Scholar 

  86. S.M. Ryabchenko, Y.G. Semenov, Sov. Phys. JETP 57, 825 (1983)

    Google Scholar 

  87. A. Golnik, J. Ginter, J.A. Gaj, J. Phys. C 16, 6073 (1983)

    Article  ADS  Google Scholar 

  88. R. Beaulac, L. Schneider, P.I. Archer et al., Science 325, 973 (2009); H.D. Nelson, L.R. Bradshaw, C.J. Barrows et al., ACS Nano 9, 11177 (2015)

    Google Scholar 

  89. K. Výborný, J.E. Han, R. Oszwałdowski et al., Phys. Rev. B 85, 155312 (2012)

    Article  Google Scholar 

  90. P. Wojnar, E. Janik, L.T. Baczewski et al., Nanoletters 12, 3404 (2012)

    Article  ADS  Google Scholar 

  91. M. Szymura, P. Wojnar, Ł. Kłopotowski et al., Nano Lett. 15, 1972 (2015)

    Article  ADS  Google Scholar 

  92. M. Jeannin, A. Artioli, P. Rueda-Fonseca et al., Phys. Rev. B 95, 035305 (2017)

    Google Scholar 

  93. D. Ferrand et al., 9th International Conference on Quantum Dots, Jeju, Korea (2016)

    Google Scholar 

  94. R. Oszwałdowski, P. Stano, A.G. Petukhov, I. Z̆utić, Phys. Rev. B 86, 205204 (2012)

    Google Scholar 

  95. T. Dietl, J. Spałek, Phys. Rev. Lett. 48, 355 (1982); Phys. Rev. B 28, 1548 (1983)

    Google Scholar 

  96. J.M. Pientka, R. Oszwałdowski, A.G. Petukhov et al., Phys. Rev. B 86, 161403(R) (2012)

    Article  ADS  Google Scholar 

  97. J.-P. Adam, S. Rohart, J. Ferré et al., Phys. Rev. B 80, 155313 (2009)

    Google Scholar 

  98. L. Besombes, Y. Léger, L. Maingault et al., Phys. Rev. Lett. 93, 207403 (2004)

    Article  ADS  Google Scholar 

  99. Y. Léger, L. Besombes, J. Fernández-Rossier et al., Phys. Rev. Lett. 97, 107401 (2006)

    Article  ADS  Google Scholar 

  100. C. Le Gall, L. Besombes, H. Boukari et al., Phys. Rev. Lett. 102, 127402 (2009)

    Article  ADS  Google Scholar 

  101. M. Goryca, T. Kazimierczuk, M. Nawrocki et al., Phys. Rev. Lett. 103, 087401 (2009)

    Article  ADS  Google Scholar 

  102. C. Le Gall, A. Brunetti, H. Boukari, L. Besombes, Phys. Rev. Lett. 107, 057401 (2011)

    Article  ADS  Google Scholar 

  103. M. Goryca, M. Koperski, P. Wojnar et al., Phys. Rev. Lett. 113, 227202 (2014)

    Article  ADS  Google Scholar 

  104. L. Besombes, H. Boukari, C. Le Gall et al., Nanophotonics 4, 75 (2015)

    Article  Google Scholar 

  105. Paul M. Koenraad, Michael E. Flatté, Nat. Mater. 10, 91 (2011)

    Article  ADS  Google Scholar 

  106. J. Kobak, T. Smoleński, M. Goryca et al., Nat. Commun. 5, 3191 (2014)

    Article  Google Scholar 

  107. T. Smoleński, T. Kazimierczuk, J. Kobak et al., Nat. Commun. 7, 10484 (2016)

    Article  ADS  Google Scholar 

  108. A. Lafuente-Sampietro, H. Utsumi, H. Boukari et al., Phys. Rev. B 93, 161301(R) (2016)

    Article  ADS  Google Scholar 

  109. T. Smoleński, W. Pacuski, M. Goryca et al., Phys. Rev. B 91, 045306 (2015)

    Article  ADS  Google Scholar 

  110. A. Kudelski, A. Lemaître, A. Miard et al., Phys. Rev. Lett. 99, 247209 (2007)

    Article  ADS  Google Scholar 

  111. L. Besombes, H. Boukari, Phys. Rev. B 89, 085315 (2014)

    Article  ADS  Google Scholar 

  112. R. Fiederling, M. Keim, G. Reuscher et al., Nature 402, 787 (1999)

    Article  ADS  Google Scholar 

  113. B.T. Jonker, Y.D. Park, B.R. Bennett et al., Phys. Rev. B 62, 8180 (2000)

    Article  ADS  Google Scholar 

  114. F. Matsukura, Y. Tokura, H. Ohno, Nat. Nanotechnol. 10, 209 (2015)

    Article  ADS  Google Scholar 

  115. M. Cormier, V. Jeudy, T. Niazi et al., Phys. Rev. B 90, 174418 (2014)

    Article  ADS  Google Scholar 

  116. T. Jungwirth, J. Sinova, J. Mašek et al., Rev. Mod. Phys. 78, 809 (2006)

    Article  ADS  Google Scholar 

  117. T. Jungwirth, J. Wunderlich, V. Novák et al., Rev. Mod. Phys. 86, 855 (2014)

    Article  ADS  Google Scholar 

  118. P. Němec, V. Novák, N. Tesařová et al., Nat. Commun. 4, 1422 (2013)

    Article  Google Scholar 

  119. M. Wang, R.A. Marshall, K.W. Edmonds et al., Appl. Phys. Lett. 104, 132406 (2014)

    Article  ADS  Google Scholar 

  120. T. Jungwirth, K.Y. Wang, J. Mašek et al., Phys. Rev. B 72, 165204 (2005)

    Article  ADS  Google Scholar 

  121. H. Ohno, Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  122. Y.D. Park, A.T. Hanbicki, S.C. Erwin et al., Science 295, 651 (2002)

    Article  ADS  Google Scholar 

  123. J.N. Chazalviel, Phys. Rev. B 11, 3918 (1975)

    Article  ADS  Google Scholar 

  124. T. Jungwirth, Q. Niu, A.H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002)

    Google Scholar 

  125. T. Jungwirth, J. Sinova, K.Y. Wang et al., Appl. Phys. Lett. 83, 320 (2004)

    Article  ADS  Google Scholar 

  126. L. Thevenard, L. Largeau, O. Mauguin et al., Phys. Rev. B 73, 195331 (2006)

    Article  ADS  Google Scholar 

  127. L. Thevenard, A. Miard, L. Vila et al., Appl. Phys. Lett. 91, 142511 (2007)

    Article  ADS  Google Scholar 

  128. B. Beschoten, P.A. Crowell, I. Malajovich et al., Phys. Rev. Lett. 83, 3073 (1999)

    Article  ADS  Google Scholar 

  129. R. Chakarvorty, K.J. Yee, X. Liu et al., 27th International Conference on the Physics of Semiconductors, AIP Conference Proceedings – June 30, 2005, vol. 772, pp. 1337–1338

    Google Scholar 

  130. N. Tesarová, T. Ostatnický, V. Novák et al., Phys. Rev. B 89, 085203 (2014)

    Article  ADS  Google Scholar 

  131. J. Curiale, A. Lemaître, C. Ulysse et al., Phys. Rev. Lett. 108, 076604 (2012)

    Article  ADS  Google Scholar 

  132. G. Fishman, G. Lampel, Phys. Rev. B 16, 820 (1977)

    Article  ADS  Google Scholar 

  133. D. Pines, C.P. Slichter, Phys. Rev. 100, 1014 (1955)

    Article  ADS  Google Scholar 

  134. C. Camilleri, F. Teppe, D. Scalbert et al., Phys. Rev. B 64, 085331 (2001)

    Article  ADS  Google Scholar 

  135. Y.G. Semenov, Phys. Rev. B 67, 115319 (2003)

    Article  ADS  Google Scholar 

  136. P.M. Shmakov, A.P. Dmitriev, VYu. Kachorovskii, Phys. Rev. B 80, 193205 (2009)

    Article  ADS  Google Scholar 

  137. Z. Ben Cheikh, S. Cronenberger, M. Vladimirova et al., Phys. Rev. B 88, 201306 (2013)

    Article  ADS  Google Scholar 

  138. D. Scalbert, J. Cernogora, C. Benoît à La Guillaume, Solid State Commun. 66, 571 (1988)

    Google Scholar 

  139. M. Goryca, D. Ferrand, P. Kossacki et al., Phys. Rev. Lett. 102, 046408 (2009)

    Article  ADS  Google Scholar 

  140. Y.S. Chen, M. Wiater, G. Karczewski et al., Phys. Rev. B 87, 155301 (2013)

    Article  ADS  Google Scholar 

  141. M. Blume, R. Orbach, Phys. Rev. 127, 1587 (1962)

    Article  ADS  Google Scholar 

  142. V. Ya Bratus, I.M. Zaritskii, A.A. Konchits et al., Sov. Phys. Solid State 18, 1348 (1976)

    Google Scholar 

  143. D. Scalbert, Phys. Stat. Sol. (b) 193, 189 (1996)

    Article  ADS  Google Scholar 

  144. J. Debus, VYu. Ivanov, S.M. Ryabchenko et al., Phys. Rev. B 93, 195307 (2016)

    Article  ADS  Google Scholar 

  145. T. Dietl, P. Peyla, W. Grieshaber et al., Phys. Rev. Lett. 74, 474 (1995)

    Article  ADS  Google Scholar 

  146. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)

    Google Scholar 

  147. I. Dzialoshinski, J. Phys. Chem. Solids 4, 241 (1958); T. Moriya, Phys. Rev. Lett. 4, 228 (1960)

    Google Scholar 

  148. B.E. Larson, H. Ehrenreich, Phys. Rev. B 39, 1747 (1989)

    Article  ADS  Google Scholar 

  149. M.I. Dyakonov, V.I. Perel, in Optical Orientation

    Google Scholar 

  150. W. Farah, D. Scalbert, M. Nawrocki, Phys. Rev. B 53, R10461 (1996)

    Article  ADS  Google Scholar 

  151. B. König, I.A. Merkulov, D.R. Yakovlev et al., Phys. Rev. B 61, 16870 (2000)

    Article  ADS  Google Scholar 

  152. A.V. Scherbakov, D.R. Yakovlev, A.V. Akimov et al., Phys. Rev. B 64, 155205 (2001)

    Article  ADS  Google Scholar 

  153. S. Takeyama, Magneto-optics of diluted magnetic semiconductors: new materials and applications, in Magneto-optics. Springer Series in Solid State Science, ed. by S. Sugano, N. Kojima (Springer, Berlin, 2000)

    Google Scholar 

  154. T. Story, C.H.W. Swüste, P.J.T. Eggenkamp et al., Phys. Rev. Lett. 77, 2802 (1996)

    Article  ADS  Google Scholar 

  155. K. Kavokin, I.A. Merkulov, Phys. Rev. B 55, 7371 (1997)

    Article  ADS  Google Scholar 

  156. F. Perez, J. Cibert, M. Vladimirova, D. Scalbert, Phys. Rev. B 83, 075311 (2011)

    Article  ADS  Google Scholar 

  157. J.A. Gaj, J. Kossut (eds.), Introduction to the Physics of Diluted Magnetic Semiconductors. Springer Series in Materials Science, vol. 144 (Springer, Berlin, 2010)

    Google Scholar 

  158. K. Kavokin, Phys. Rev. B 59, 9822 (1999)

    Google Scholar 

  159. D. Scalbert, F. Teppe, M. Vladimirova et al., Phys. Rev. B 70, 245304 (2004)

    Article  ADS  Google Scholar 

  160. B. Sun, D. Jiang, Z. Sun et al., J. Appl. Phys. 100, 083104 (2006)

    Article  ADS  Google Scholar 

  161. F.J. Teran, M. Potemski, D.K. Maude et al., Phys. Rev. Lett. 91, 077201 (2003)

    Article  ADS  Google Scholar 

  162. J. König, A.H. MacDonald, Phys. Rev. Lett. 91, 077202 (2003)

    Article  ADS  Google Scholar 

  163. M. Vladimirova, S. Cronenberger, P. Barate et al., Phys. Rev. B 78, 081305 (2008)

    Article  ADS  Google Scholar 

  164. P. Barate, S. Cronenberger, V. Vladimirova et al., Phys. Rev. B 82, 075306 (2010)

    Article  ADS  Google Scholar 

  165. L. Viña, J. Phys.: Condens. Matter 11, 5929 (1999)

    ADS  Google Scholar 

  166. G. Mackh, W. Ossau, D.R. Yakovlev et al., Phys. Rev. B 49, 10248 (1994)

    Article  ADS  Google Scholar 

  167. D.R. Yakovlev, K.V. Kavokin, I.A. Merkulov et al., Phys. Rev. B 56, 9782 (1997)

    Article  ADS  Google Scholar 

  168. J.-Y. Bigot, L. Guidoni, E. Beaurepaire et al., Phys. Rev. Lett. 93, 077401 (2004)

    Article  ADS  Google Scholar 

  169. E. Kojima, R. Shimano, Y. Hashimoto et al., Phys. Rev. B 68, 193203 (2003)

    Article  ADS  Google Scholar 

  170. B. Koopmans, M. van Kampen, J.T. Kohlhepp et al., Phys. Rev. Lett. 85, 844 (2000)

    Article  ADS  Google Scholar 

  171. J.M. Kikkawa, D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998)

    Article  ADS  Google Scholar 

  172. R. Akimoto, K. Ando, F. Sasaki et al., Phys. Rev. B 56, 9726 (1997)

    Article  ADS  Google Scholar 

  173. S.A. Crooker, J.J. Baumberg, F. Flack et al., Phys. Rev. Lett. 77, 2814 (1996)

    Article  ADS  Google Scholar 

  174. J.A. Gupta, R. Knobel, N. Samarth, D.D. Awschalom, Science 292, 2458 (2001)

    Article  ADS  Google Scholar 

  175. J.M. Kikkawa, D.D. Awschalom, Science 287, 473 (2000)

    Article  ADS  Google Scholar 

  176. A. Malinowski, R.T. Harley, Solid State Commun. 114, 419 (2000)

    Article  ADS  Google Scholar 

  177. A. Malinowski, M.A. Brand, R.T. Harley, Phys. E 10, 13 (2001)

    Article  Google Scholar 

  178. G. Salis, D.T. Fuchs, J.M. Kikkawa et al., Phys. Rev. Lett. 86, 2677 (2001)

    Article  ADS  Google Scholar 

  179. R. Akimoto, K. Ando, F. Sasaki et al., J. Appl. Phys. 84, 6318 (1998)

    Article  ADS  Google Scholar 

  180. S.A. Crooker, D.D. Awschalom, J.J. Baumberg et al., Phys. Rev. B 56, 7574 (1997)

    Article  ADS  Google Scholar 

  181. R. Akimoto, K. Ando, F. Sasaki et al., Phys. Rev. B 57, 7208 (1998)

    Article  ADS  Google Scholar 

  182. J. Lambe, C. Kikuchi, Phys. Rev. 4, 1256, 119 (1960)

    Google Scholar 

  183. S. Cronenberger, M. Vladimirova, S.V. Andreev et al., Phys. Rev. Lett. 110, 077403 (2013)

    Article  ADS  Google Scholar 

  184. Y. Mitsumori, A. Oiwa, T. Slupinski et al., Phys. Rev. B 69, 033203 (2004)

    Article  ADS  Google Scholar 

  185. A.V. Kimel, G.V. Astakhov, G.M. Schott et al., Phys. Rev. Lett. 92, 237203 (2004)

    Article  ADS  Google Scholar 

  186. J. Wang, C. Sun, Y. Hashimoto et al., J. Phys.: Condens. Matter 18, R501 (2006)

    Google Scholar 

  187. M. van Kampen, C. Jozsa, J.T. Kohlhepp et al., Phys. Rev. Lett. 88, 227201 (2002)

    Article  ADS  Google Scholar 

  188. K.-Y. Wang, M. Sawicki, K.W. Edmonds et al., Phys. Rev. Lett. 95, 217204 (2005)

    Article  ADS  Google Scholar 

  189. U. Welp, V.K. Vlasko-Vlasov, X. Liu et al., Phys. Rev. Lett. 90, 167206 (2003)

    Article  ADS  Google Scholar 

  190. D.M. Wang, Y.H. Ren, X. Liu et al., Phys. Rev. B 75, 233308 (2007)

    Article  ADS  Google Scholar 

  191. M. Kaneko, in Magnetooptics, ed. by S. Sugano, N. Kojima (Springer, Berlin, 2000), pp. 271–315

    Google Scholar 

  192. J. Wang, C. Sun, J. Kono et al., Phys. Rev. Lett. 95, 167401 (2005)

    Article  ADS  Google Scholar 

  193. F. Teppe, M. Vladimirova, D. Scalbert et al., Phys. Rev. B 67, 033304 (2003)

    Article  ADS  Google Scholar 

  194. M.K. Kneip, D.R. Yakovlev, M. Bayer et al., Phys. Rev. B 73, 035306 (2006)

    Article  ADS  Google Scholar 

  195. V.D. Kulakovskii, M.G. Tyazhlov, A.I. Filin et al., Phys. Rev. B 54, R8333 (1996)

    Article  ADS  Google Scholar 

  196. M.G. Tyazhlov, V.D. Kulakovskii, A.I. Filin et al., Phys. Rev. B 59, 2050 (1999)

    Article  ADS  Google Scholar 

  197. M. Vladimirova, D. Scalbert, C. Misbah, Phys. Rev. B 71, 233203 (2005)

    Article  ADS  Google Scholar 

  198. J. Hubner, F. Berski, R. Dahbashi, M. Oestreich, Phys. Status Solidi (b) 251, 1824 (2014)

    Article  ADS  Google Scholar 

  199. S. Cronenberger, D. Scalbert, D. Ferrand et al., Nat. Commun. 6, 8121 (2015)

    Article  Google Scholar 

  200. R.S. Codrington, N. Bloembergen, J. Chem. Phys. 29, 600 (1958)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Scalbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cibert, J., Scalbert, D. (2017). Diluted Magnetic Semiconductors: Basic Physics and Optical Properties. In: Dyakonov, M. (eds) Spin Physics in Semiconductors. Springer Series in Solid-State Sciences, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-65436-2_14

Download citation

Publish with us

Policies and ethics