Skip to main content

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

The modern study of elliptic fibrations started in the early 1960s with seminal works by Kodaira and by Néron. Elliptic fibrations play a central role in the classification of algebraic surfaces, in many aspects of arithmetic geometry, theoretical physics, and string geometry. In these notes, we introduce the reader to basic geometric properties of elliptic fibrations over the complex numbers. We start with an introduction to the geometry of elliptic curves defined over the complex numbers. We then discuss Weierstrass models, Kodaira’s classification of singular fibers of elliptic surfaces, Tate’s algorithm, and Miranda’s regularization of elliptic threefolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Given three sets (\(A_1\), \(A_2\), and S) and two maps \(\varphi _1:A_1\rightarrow B\) and \(\varphi _2:A_2\rightarrow B\), we define the fibral product \(A_1\times _S A_2\) as the subset of \(A_1\times A_2\) composed of couples \((a_1,a_2)\) such that \(\varphi _1 (a_1)=\varphi _2(a_2)\).

  2. 2.

    For example, if p is the generic point of a subvariety of B.

  3. 3.

    As usual we take the convention in which the ring itself is not a prime ideal.

References

  1. A. Beauville, Complex Algebraic Surfaces. London Mathematical Society Lecture Note, vol. 68 (Cambridge Univ. Press, Cambridge, 1983)

    Google Scholar 

  2. B. Conrad, Minimal Models for Elliptic Curves, unpublished work available on his website

    Google Scholar 

  3. F.E. Cossec, I.V. Dolgachev, Enriques Surfaces I. Progress in Math. vol. 76 (Birkhäuser, 1989)

    Google Scholar 

  4. P. Deligne, Courbes elliptiques: formulaire d’après J. Tate, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics, vol. 476 (Springer, Berlin, 1975), pp. 53–73

    Google Scholar 

  5. J. Dieudonné, A. Grothendieck, Eléments de Géometrie Algébrique. I. Le Language des Schémas (French) Inst. Hautes Etudes Sci. Publ. Math. vol. 4 (1960), p. 228

    Google Scholar 

  6. T. Dokchitser, V. Dokchitser, A remark on Tate’s algorithm and Kodaira types. Acta Arithmetica 160, 95–100 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. I. Dolgachev, M. Gross, Elliptic three-folds I: Ogg-Shafarevich theory. J. Algebraic Geom. 3, 39–80 (1994). MR 95d:14037

    Google Scholar 

  8. I.V. Dolgachev, On the purity of the degeneration loci of families of curves. Invent. Math. 8, 34–54 (1969)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. W. Fulton, Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2 edn. (Springer, Berlin, 1998)

    Google Scholar 

  10. R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, vol. 52 (Springer, Berlin, 1977)

    Google Scholar 

  11. D. Husemöller, Elliptic Curves (Springer, Berlin, 2004)

    Google Scholar 

  12. K. Kodaira, On compact analytic surfaces II–III. Ann. Math. 77, 563–626 (1963); 78, 1–40 (1963)

    Google Scholar 

  13. Q. Liu, Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6 (Oxford University Press, Oxford, 2002). Translated from the French by Reinie Erné, Oxford Science Publications

    Google Scholar 

  14. R. Miranda, Smooth Models for Elliptic Threefolds, in: R. Friedman, D.R. Morrison (Eds.), The Birational Geometry of Degenerations, Progress in Mathe-matics 29, Birkhauser (1983), pp. 85–133

    Google Scholar 

  15. R. Miranda, The Basic Theory of Elliptic Surfaces, Dottorato di Ricerca in Matematica (Dipartimento di Matematica dell’ Universita di Pisa, ETS Editrice Pisa, 1989)

    Google Scholar 

  16. D. Mumford, K. Suominen, Introduction to the theory of moduli, in Algebraic Geometry, Oslo, 1970, Proceedings of the 5th Nordic summer school in mathematics. Wolters-Noordhoff, 171–222 (1972)

    Google Scholar 

  17. N. Nakayama, Local Structure of an Elliptic Fibration, Higher dimensional birational geometry. Advanced Studies in Pure Mathematics, vol. 35 (Mathematical Society, Kyoto, 1997), pp. 185–295

    Google Scholar 

  18. N. Nakayama, Global structure of an elliptic fibration. Publ. Res. Inst. Math. Sci. 38, 451–649 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Néron, Modèles Minimaux des Variétés Abeliennes sur les Corps Locaux et Globaux, Publ. Math. I.H.E.S. 21, 361–482 (1964)

    Google Scholar 

  20. W. Schmid, Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. M. Schütt, T. Shioda, Elliptic surfaces, Algebraic geometry in East Asia - Seoul 2008. Adv. Stud. Pure Math. 60, 51–160 (2010)

    MATH  Google Scholar 

  22. J.P. Serre, A Course in Arithmetic (Springer, New York, 1973)

    Google Scholar 

  23. J. Silverman, Advanced topics in the Arithmetic of Elliptic Curves (Springer, Berlin, 1995)

    Google Scholar 

  24. J. Silverman, The Arithmetic of Elliptic Curves (Springer, Berlin, 1986)

    Google Scholar 

  25. V. Snyder, C.H. Sisam, Analytic Geometry of Space (Henry Holt and Company, 1914)

    Google Scholar 

  26. M. Szydlo, Flat Regular Models of Elliptic Schemes, Ph.D thesis, Harvard University (1999)

    Google Scholar 

  27. M. Szydlo, Elliptic fibers over non-perfect residue fields. J. Number Theory 104, 75–99 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. J.T. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular Functions of One Variable IV. Lecture Notes in Mathematics, vol. 476 (Springer, Berlin, 1975)

    Google Scholar 

  29. J.T. Tate, The arithmetics of elliptic curves. Invent. Math. 23, 170–206 (1974)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the organizers and the participants of the Villa de Leyva Summer School of 2015. I am deeply grateful to my collaborators Ravi Jagadeesan, Patrick Jefferson, Monica Kang, Sabrina Pasterski, Julian Salazar, Shu-Heng Shao, and Shing-Tung Yau for helpful discussions. I am also thankful to Paolo Aluffi and Matilde Marcolli who have introduced me to the school. This work is partly supported by the National Science Foundation (NSF) grants DMS-1406925 and DMS-1701635 “Elliptic Fibrations and String Theory.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mboyo Esole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Esole, M. (2017). Introduction to Elliptic Fibrations. In: Cardona, A., Morales, P., Ocampo, H., Paycha, S., Reyes Lega, A. (eds) Quantization, Geometry and Noncommutative Structures in Mathematics and Physics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-65427-0_7

Download citation

Publish with us

Policies and ethics