Skip to main content

Stability of Modons and Wu-Verkley Waves

  • Chapter
  • First Online:
  • 609 Accesses

Abstract

The modons and Wu-Verkley (WV) waves are weak solutions of the barotropic vorticity equation governing the motion of an ideal and unforced fluid on a sphere. Since the pioneering work by Larichev and Reznik, vortex pairs known as modons have attracted a great deal of attention because of their potential applications in geophysical fluid dynamics and plasma physics. Indeed, multiple attempts were made to use the geometric structure and the relative stability of modons for explaining the phenomena of atmospheric blocking. In this connection, modon stability was an important issue in all modon applications. Also, using the unstable and stable manifolds of a WV wave, Wu showed numerically that a non-stationary solution of forced and dissipative vorticity equation can cyclically approach one of the two main atmospheric regimes, namely the zonal circulation and blocking-like circulation.

In this chapter, the stability of WV waves and three different types of modons by Verkley is studied. The structure of these solutions is briefly described in Sect. 6.1. A conservation law for infinitesimal perturbations of a stationary modon and WV wave is derived in Sect. 6.2 and used in Sect. 6.3 to obtain a necessary condition (Theorem 6.3.1) for the exponential (normal mode) instability of such solutions. We will show that the new condition imposes a restriction on the spectral distribution of the energy of both unstable and decaying modes through the value of mean spectral number χ of the mode amplitude where χ is the square of Fjörtoft’s average spectral number. The new instability conditions specify the spectral structure of unstable disturbances which must belong to a hypersurface in the phase space of perturbations. Unlike LP flows and RH waves, the conditions for the normal mode instability of the WV waves and modons depend not only on the degree of the basic solution, but also on the spectral distribution of the mode energy in the inner and outer regions of the solution. The only exception is the modon with uniform absolute vorticity in the inner region. Note that some results on the stability obtained in this chapter can also be applied to quadrupole modons by Neven.

In Sect. 6.4, the instability conditions are used to evaluate the maximum growth rate of unstable modes of the WV waves and modons (Theorem 6.4.1). It is also shown in this section that the amplitude of any unstable, decaying or non-stationary mode is orthogonal to the basic solution in the \(\mathbb{H}_{0}^{1}\)-inner product (Theorem 6.4.2). The results obtained allow testing the numerical algorithms and program packages developed for the linear stability study. Note again that the average spectral number by Fjörtoft appears both in the instability conditions and in the estimates of the maximum growth rate of unstable modes.

The case of two dipole modons moving along the same latitudinal circle is considered in Sect. 6.5, and the distance between these modons is estimated. The results are used in Sect. 6.6 to prove the instability of dipole modons in the sense of Liapunov. The mechanism of instability is explained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)

    MATH  Google Scholar 

  2. Andrews, D.G.: A conservation law for small-amplitude quasi-geostrophic disturbances on a zonally asymmetric basic flow. J. Atmos. Sci. 40, 85–90 (1983)

    Article  Google Scholar 

  3. Carnevale, G.F., Briscolini, M., Purini, R., Vallis, G.K.: Numerical experiments on modon stability to topographic perturbations. Phys. Fluids 31, 2562–2566 (1988)

    Article  Google Scholar 

  4. Carnevale, G.F., Vallis, G.K., Purini, R., Briscolini, M.: The role of initial conditions in flow stability with application to modons. Phys. Fluids 31, 2567–2572 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fjörtoft, R.: On the changes in the spectral distribution of kinetic energy for two-dimensional nondivergent flow. Tellus 5(3), 225–230 (1953)

    Article  MathSciNet  Google Scholar 

  6. Flierl, G.R., Stern, M.E., Whitehead, J.A., Jr.: The physical significance of modons: laboratory experiments and general integral constraints. Dyn. Atmos. Oceans 7, 233–264 (1983)

    Article  Google Scholar 

  7. Gordin, V.A., Petviashvili, V.I.: Liapunov-stable quasi-geostrophic vortices. Sov. Phys. Dokl. 30(12), 1004–1006 (1986)

    MATH  Google Scholar 

  8. Haarsma, R.J., Opsteegh J.D.: Barotropic instability of planetary-scale flows. J. Atmos. Sci. 45(20), 2789–2810 (1988)

    Article  Google Scholar 

  9. Korn, G.A., Korn, T.M.: Mathematical Handbook. McGraw-Hill Book Company, New York (1968)

    MATH  Google Scholar 

  10. Laedke, E.W., Spatschek, K.H.: Two-dimensional drift vortices and their stability. Phys. Fluids 29, 133–142 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lamb, G.L., Jr.: Elements of Soliton Theory. Wiley-Interscience, New York (1980)

    MATH  Google Scholar 

  12. Larichev, V.D.: Analytic theory for the weak interaction of Rossby solitons. Izv. Atmos. Oceanic. Phys. 25(2), 94–101 (1990)

    MathSciNet  Google Scholar 

  13. Larichev, V.D., Reznik, G.M.: A two-dimensional Rossby soliton - an exact solution. Dokl. Akad. Nauk SSSR 231(5), 1077–1079 (1976)

    Google Scholar 

  14. Larichev, V.D., Reznik, G.M.: Numerical experiments on the study of collision of two-dimensional solitary Rossby waves. Dokl. Akad. Nauk SSSR 264(1), 229–233 (1982)

    Google Scholar 

  15. Larichev, V.D., Reznik, G.M.: On collisions between two-dimensional solitary Rossby waves. Oceanology 23(5), 545–552 (1983)

    Google Scholar 

  16. Marquet, P.: On the concept of pseudo-energy of T. G. Shepherd. Q. J. R. Meteorol. Soc. 121(522), 455–459 (1995)

    Google Scholar 

  17. Neven, E.C.: Quadrupole modons on a sphere. Geophys. Astrophys. Fluid Dyn. 65, 105–126 (1992)

    Article  Google Scholar 

  18. Neven, E.C.: Modons on a Sphere. Universiteit Utrecht, Utrecht (1993)

    Google Scholar 

  19. Neven, E.C.: Linear stability of modons on a sphere. J. Atmos. Sci. 58 2280–2305 (2001)

    Article  MathSciNet  Google Scholar 

  20. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser, Basel (2013)

    MATH  Google Scholar 

  21. Nycander, J.: Refutation of stability proofs for dipole vortices. Phys. Fluids A 4, 467–476 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Olver, F.V.J.: Asymptotics and Special Functions. A K Peters/CRC Press, New York (1997)

    MATH  Google Scholar 

  23. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  24. Pierini, S.: On the stability of equivalent modons. Dyn. Atmos. Oceans 9, 273–280 (1985)

    Article  Google Scholar 

  25. Sakuma, H., Ghil, M.: Stability of stationary barotropic modons by Lyapunov’s direct method. J. Fluid Mech. 211, 393–416 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shepherd, T.G.: Remarks concerning the double cascade as a necessary mechanism for the instability of steady equivalent-barotropic flows. Il Nuovo Cimento C 11(4), 439–442 (1988)

    Article  Google Scholar 

  27. Simmons, A.J., Wallace, J.M., Branstator, G.W.: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci. 40(6), 1363–1392 (1983)

    Article  Google Scholar 

  28. Skiba, Yu.N.: Dynamics of perturbations of the Rossby-Haurwitz wave and the Verkley modon. Atmósfera 6(2), 87–125 (1993)

    Google Scholar 

  29. Skiba, Yu.N.: Spectral approximation in the numerical stability study of non-divergent viscous flows on a sphere. Numer. Methods Partial Differ. Equ. 14(2), 143–157 (1998)

    Article  MATH  Google Scholar 

  30. Skiba, Yu.N.: On the spectral problem in the linear stability study of flows on a sphere. J. Math. Anal. Appl. 270, 165–180 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Skiba, Yu.N.: Role of forcing in large-time behavior of vorticity equation solutions on a sphere. Atmósfera 28(4), 283–296 (2015)

    Article  Google Scholar 

  32. Skiba, Yu.N., Strelkov, A.Y.: On the normal mode instability of modons and Wu-Verkley waves. Geophys. Astrophys. Fluid Dyn. 93 (1–2), 39–54 (2000)

    Article  MathSciNet  Google Scholar 

  33. Skiba, Yu.N., Strelkov, A.Y.: Spectral structure of growing normal modes for exact solutions to barotropic vorticity equation on a sphere. In: Ramos, E., Fernández-Flores, R., Santillán-González, A., Cisneros, G. (eds.) Computational Fluid Dynamics, pp. 129–139. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  34. Swaters, G.E.: Stability conditions and a priori estimates for equivalent-barotropic modons. Phys. Fluids 29(5), 1419–1422 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  36. Verkley, W.T.M.: The construction of barotropic modons on a sphere. J. Atmos. Sci. 41(16), 2492–2504 (1984)

    Article  MathSciNet  Google Scholar 

  37. Verkley, W.T.M.: Stationary barotropic modons in westerly background flows. J. Atmos. Sci. 44, 2383–2398 (1987)

    Article  Google Scholar 

  38. Verkley, W.T.M.: Modons with uniform absolute vorticity. J. Atmos. Sci. 47, 727–745 (1990)

    Article  MathSciNet  Google Scholar 

  39. Wu, P.: On nonlinear structures and persistent anomalies in the atmosphere. Ph.D Thesis. Imperial College, London (1992)

    Google Scholar 

  40. Wu, P.: Nonlinear resonance and instability of planetary waves and low-frequency variability in the atmosphere. J. Atmos. Sci. 50, 3590–3607 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Skiba, Y.N. (2017). Stability of Modons and Wu-Verkley Waves. In: Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere. Springer, Cham. https://doi.org/10.1007/978-3-319-65412-6_6

Download citation

Publish with us

Policies and ethics