Skip to main content

Perioperative Management of LVAD Patients

  • Chapter
  • First Online:
Mechanical Circulatory Support for Advanced Heart Failure

Abstract

A recent INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) annual report on the outcomes of patients who underwent continuous-flow left ventricular assist device (CF-LVAD) or biventricular assist device implantation showed that these patients had a 1-year survival rate of 80% [1]. Most of the mortalities occurred within the first 30 days after device implantation or during the postoperative period of the index hospitalization [1, 2]. The major causes of death during this period were as follows: 60–65% were due to multisystem organ failure (MSOF), which was driven primarily by poor oxygen delivery (DO2) and, often, specifically by right heart failure (RHF) [1, 2]; 15–20% were due to embolic and hemorrhagic stroke [1, 2]; 10–15% were due to bleeding events [1, 2]; 5–10% were sepsis related [3, 4]; and approximately 5% were due to respiratory failure [3]. The remaining deaths were mainly due to device malfunction, arrhythmias, or other less common complications [3, 4]. These data suggest that poor LVAD implantation outcomes can often be prevented or effectively managed. Therefore, diligent perioperative care is paramount to ensure positive outcomes for these patients. This chapter reviews the critical components of effective post operative care, and troubleshooting for the newly implanted CF-LVAD patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495–504.

    Article  PubMed  Google Scholar 

  2. Stulak JM, Mehta V, Schirger JA, Aaronson KD, Joyce LD, Daly RC, et al. Temporal differences in causes of mortality after left ventricular assist device implantation. Ann Thorac Surg. 2015;99:1969–72. discussion 1972–4

    Article  PubMed  Google Scholar 

  3. Allen SJ, Sidebotham D. Postoperative care and complications after ventricular assist device implantation. Best Pract Res Clin Anaesthesiol. 2012;26:231–46.

    Article  PubMed  Google Scholar 

  4. Topkara VK, Kondareddy S, Malik F, Wang IW, Mann DL, Ewald GA, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90:1270–7.

    Article  PubMed  Google Scholar 

  5. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.

    Article  PubMed  Google Scholar 

  6. Holdy K, Dembitsky W, Eaton LL, Chillcott S, Stahovich M, Rasmusson B, et al. Nutrition assessment and management of left ventricular assist device patients. J Heart Lung Transplant. 2005;24:1690–6.

    Article  PubMed  Google Scholar 

  7. Yost G, Gregory M, Bhat G. Nutrition assessment with indirect calorimetry in patients evaluated for left ventricular assist device implantation. Nutr Clin Pract. 2015;30:690–7.

    Article  PubMed  Google Scholar 

  8. Liszkowski M, Teuteberg JJ, Myers SL, Rogers JG, Starling R, Ascheim DD, et al. 63: INTERMACS profiles of nutrition and organ function in relation to outcomes. J Heart Lung Transplant. 2010;29:S27.

    Article  Google Scholar 

  9. Aggarwal A, Kumar A, Gregory MP, Blair C, Pauwaa S, Tatooles AJ, et al. Nutrition assessment in advanced heart failure patients evaluated for ventricular assist devices or cardiac transplantation. Nutr Clin Pract. 2013;28:112–9.

    Article  PubMed  Google Scholar 

  10. Holman WL, Skinner JL, Waites KB, Benza RL, McGiffin DC, Kirklin JK. Infection during circulatory support with ventricular assist devices. Ann Thorac Surg. 1999;68:711–6.

    Article  CAS  PubMed  Google Scholar 

  11. Acharya MN, Som R, Tsui S. What is the optimum antibiotic prophylaxis in patients undergoing implantation of a left ventricular assist device? Interact Cardiovasc Thorac Surg. 2012;14:209–14.

    Article  PubMed  Google Scholar 

  12. George S, Leasure AR, Horstmanshof D. Effectiveness of decolonization with chlorhexidine and mupirocin in reducing surgical site infections: a systematic review. Dimens Crit Care Nurs. 2016;35:204–22.

    Article  PubMed  Google Scholar 

  13. Brisco MA, Testani JM, Cook JL. Renal dysfunction and chronic mechanical circulatory support: from patient selection to long-term management and prognosis. Curr Opin Cardiol. 2016;31:277–86.

    Article  PubMed  Google Scholar 

  14. Gilotra NA, Russell SD. Patient selection for mechanical circulatory support. Heart Fail Rev. 2013;18:27–34.

    Article  PubMed  Google Scholar 

  15. Mao H, Katz N, Kim JC, Day S, Ronco C. Implantable left ventricular assist devices and the kidney. Blood Purif. 2014;37:57–66.

    Article  PubMed  Google Scholar 

  16. Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney’s perspective. Heart Fail Rev. 2015;20:519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lima B, Kale P, Gonzalez-Stawinski GV, Kuiper JJ, Carey S, Hall SA. Effectiveness and safety of the Impella 5.0 as a bridge to cardiac transplantation or durable left ventricular assist device. Am J Cardiol. 2016;117:1622–8.

    Article  PubMed  Google Scholar 

  18. Rao V, Oz MC, Flannery MA, Catanese KA, Argenziano M, Naka Y. Revised screening scale to predict survival after insertion of a left ventricular assist device. J Thorac Cardiovasc Surg. 2003;125:855–62.

    Article  PubMed  Google Scholar 

  19. Borgi J, Tsiouris A, Hodari A, Cogan CM, Paone G, Morgan JA. Significance of postoperative acute renal failure after continuous-flow left ventricular assist device implantation. Ann Thorac Surg. 2013;95:163–9.

    Article  PubMed  Google Scholar 

  20. Maltais S, Stulak JM. Right and left ventricular assist devices support and liver dysfunction: prognostic and therapeutic implications. Curr Opin Cardiol. 2016;31:287–91.

    Article  PubMed  Google Scholar 

  21. Wadia Y, Etheridge W, Smart F, Wood RP, Frazier OH. Pathophysiology of hepatic dysfunction and intrahepatic cholestasis in heart failure and after left ventricular assist device support. J Heart Lung Transplant. 2005;24:361–70.

    Article  PubMed  Google Scholar 

  22. Yuan N, Arnaoutakis GJ, George TJ, Allen JG, Ju DG, Schaffer JM, et al. The spectrum of complications following left ventricular assist device placement. J Card Surg. 2012;27:630–8.

    Article  PubMed  Google Scholar 

  23. Concha PM, Mertz KV. Perioperative risk among patients with cirrhosis. Rev Med Chil. 2010;138:1165–71.

    Article  Google Scholar 

  24. Matthews JC, Pagani FD, Haft JW, Koelling TM, Naftel DC, Aaronson KD. Model for end-stage liver disease score predicts left ventricular assist device operative transfusion requirements, morbidity, and mortality. Circulation. 2010;121:214–20.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Modi A, Vohra HA, Barlow CW. Do patients with liver cirrhosis undergoing cardiac surgery have acceptable outcomes? Interact Cardiovasc Thorac Surg. 2010;11:630–4.

    Article  PubMed  Google Scholar 

  26. Morgan JA, Go PH, Xuereb L, Kaur B, Akrawe S, Nemeh HW, et al. Outcomes on continuous flow left ventricular assist devices: a single institutional 9-year experience. Ann Thorac Surg. 2016;102:1266–73.

    Article  PubMed  Google Scholar 

  27. Weymann A, Patil NP, Sabashnikov A, Mohite PN, Garcia Saez D, Bireta C, et al. Continuous-flow left ventricular assist device therapy in patients with preoperative hepatic failure: are we pushing the limits too far? Artif Organs. 2015;39:336–42.

    Article  CAS  PubMed  Google Scholar 

  28. Agostoni P, Cattadori G, Guazzi M, Palermo P, Bussotti M, Marenzi G. Cardiomegaly as a possible cause of lung dysfunction in patients with heart failure. Am Heart J. 2000;140:e24.

    Article  CAS  PubMed  Google Scholar 

  29. Dimopoulou I, Daganou M, Tsintzas OK, Tzelepis GE. Effects of severity of long-standing congestive heart failure on pulmonary function. Respir Med. 1998;92:1321–5.

    Article  CAS  PubMed  Google Scholar 

  30. Hosenpud JD, Stibolt TA, Atwal K, Shelley D. Abnormal pulmonary function specifically related to congestive heart failure: comparison of patients before and after cardiac transplantation. Am J Med. 1990;88:493–6.

    Article  CAS  PubMed  Google Scholar 

  31. Imamura T, Kinugawa K, Kinoshita O, Nawata K, Ono M. Reversible decline in pulmonary function during left ventricular assist device therapy. J Artif Organs. 2016;19:330–5.

    Article  CAS  PubMed  Google Scholar 

  32. Mohamedali B, Bhat G, Yost G, Tatooles A. Changes in spirometry after left ventricular assist device implantation. Artif Organs. 2015;39:1046–50.

    Article  CAS  PubMed  Google Scholar 

  33. Arena R, Humphrey R, McCall R. Altered exercise pulmonary function after left ventricular assist device implantation. J Cardpulm Rehabil. 1999;19:344–6.

    Article  CAS  Google Scholar 

  34. Herlihy J, Cooper J, Reul R. Cardiac surgery and weaning: Clinical and therapeutic implications. In: Rodriguez E, Matias A, Volsko TA, editors. Yearbook respiratory care clinics and applied technologies. San Franciso, S.A.: Tipografia; 2008. p. 907–20.

    Google Scholar 

  35. Wynne R, Botti M. Postoperative pulmonary dysfunction in adults after cardiac surgery with cardiopulmonary bypass: clinical significance and implications for practice. Am J Crit Care. 2004;13:384–93.

    PubMed  Google Scholar 

  36. Weiner P, Zeidan F, Zamir D, Pelled B, Waizman J, Beckerman M, et al. Prophylactic inspiratory muscle training in patients undergoing coronary artery bypass graft. World J Surg. 1998;22:427–31.

    Article  CAS  PubMed  Google Scholar 

  37. Houston BA, Kalathiya RJ, Hsu S, Loungani R, Davis ME, Coffin ST, et al. Right ventricular afterload sensitivity dramatically increases after left ventricular assist device implantation: a multi-center hemodynamic analysis. J Heart Lung Transplant. 2016;35:868–76.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Epting CL, McBride ME, Wald EL, Costello JM. Pathophysiology of post-operative low cardiac output syndrome. Curr Vasc Pharmacol. 2016;14:14–23.

    Article  CAS  PubMed  Google Scholar 

  39. Omar S, Zedan A, Nugent K. Cardiac vasoplegia syndrome: pathophysiology, risk factors and treatment. Am J Med Sci. 2015;349:80–8.

    Article  PubMed  Google Scholar 

  40. Flores AS, Essandoh M, Yerington GC, Bhatt AM, Iyer MH, Perez W, et al. Echocardiographic assessment for ventricular assist device placement. J Thorac Dis. 2015;7:2139–50.

    PubMed  PubMed Central  Google Scholar 

  41. de Jonge N, van Wichen DF, Schipper ME, Lahpor JR, Gmelig-Meyling FH, Robles de Medina EO, et al. left ventricular assist device in end-stage heart failure: persistence of structural myocyte damage after unloading. An immunohistochemical analysis of the contractile myofilaments. J Am Coll Cardiol. 2002;39:963–9.

    Article  PubMed  Google Scholar 

  42. Buckberg G, Hoffman JI, Mahajan A, Saleh S, Coghlan C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation. 2008;118:2571–87.

    Article  PubMed  Google Scholar 

  43. Ambardekar AV, Buttrick PM. Reverse remodeling with left ventricular assist devices: a review of clinical, cellular, and molecular effects. Circ Heart Fail. 2011;4:224–33.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pratt AK, Shah NS, Boyce SW. Left ventricular assist device management in the ICU. Crit Care Med. 2014;42:158–68.

    Article  PubMed  Google Scholar 

  45. Healy AH, McKellar SH, Drakos SG, Koliopoulou A, Stehlik J, Selzman CH. Physiologic effects of continuous-flow left ventricular assist devices. J Surg Res. 2016;202:363–71.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sheu R, Joshi B, High K, Thinh Pham D, Ferreira R, Cobey F. Perioperative management of patients with left ventricular assist devices undergoing noncardiac procedures: a survey of current practices. J Cardiothorac Vasc Anesth. 2015;29:17–26.

    Article  PubMed  Google Scholar 

  47. Cheifetz IM. Cardiorespiratory interactions: the relationship between mechanical ventilation and hemodynamics. Respir Care. 2014;59:1937–45.

    Article  PubMed  Google Scholar 

  48. Tam MK, Wong WT, Gomersall CD, Tian Q, Ng SK, Leung CC, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163–8.

    Article  CAS  PubMed  Google Scholar 

  49. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  CAS  PubMed  Google Scholar 

  50. John R, Kamdar F, Liao K, Colvin-Adams M, Boyle A, Joyce L. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann Thorac Surg. 2008;86:1227–34. discussion 1234–5

    Article  PubMed  Google Scholar 

  51. Genovese EA, Dew MA, Teuteberg JJ, Simon MA, Kay J, Siegenthaler MP, et al. Incidence and patterns of adverse event onset during the first 60 days after ventricular assist device implantation. Ann Thorac Surg. 2009;88:1162–70.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tsiouris A, Paone G, Nemeh HW, Borgi J, Williams CT, Lanfear DE, et al. Short and long term outcomes of 200 patients supported by continuous-flow left ventricular assist devices. World J Cardiol. 2015;7:792–800.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  CAS  PubMed  Google Scholar 

  54. Horvath D, Byram N, Karimov JH, Kuban B, Sunagawa G, Golding LA, et al. Mechanism of self-regulation and in vivo performance of the Cleveland Clinic continuous-flow total artificial heart. Artif Organs. 2016;41(5):411–7.

    Article  PubMed  CAS  Google Scholar 

  55. HeartWare. HeartWare Ventricular Assist System: Instructions for Use. http://www.heartware.com/sites/default/files/uploads/docs/ifu00001_rev_15.pdf. Accessed 1 Feb 2017.

  56. Thoratec Corporation. Resource Library (USA): HeartMate II LVAD. http://www.thoratec.com/medical-professionals/resource-library/ifus-manuals/heartmate-ll-lvad.aspx. Accessed 1 Feb 2017.

  57. Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, et al. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32:1–11.

    Article  PubMed  Google Scholar 

  58. Meineri M, Van Rensburg AE, Vegas A. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract Res Clin Anaesthesiol. 2012;26:217–29.

    Article  PubMed  Google Scholar 

  59. Stainback RF, Estep JD, Agler DA, Birks EJ, Bremer M, Hung J, et al. Echocardiography in the management of patients with left ventricular assist devices: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:853–909.

    Article  PubMed  Google Scholar 

  60. Pagani FD. Continuous-flow rotary left ventricular assist devices with “3rd generation” design. Semin Thorac Cardiovasc Surg. 2008;20:255–63.

    Article  PubMed  Google Scholar 

  61. Slaughter MS, Bartoli CR, Sobieski MA, Pantalos GM, Giridharan GA, Dowling RD, et al. Intraoperative evaluation of the HeartMate II flow estimator. J Heart Lung Transplant. 2009;28:39–43.

    Article  PubMed  Google Scholar 

  62. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29:S1–39.

    Article  PubMed  Google Scholar 

  63. Blum FE, Weiss GM, Cleveland JC Jr, Weitzel NS. Postoperative management for patients with durable mechanical circulatory support devices. Semin Cardiothorac Vasc Anesth. 2015;19:318–30.

    Article  PubMed  Google Scholar 

  64. Scolletta S, Biagioli B, Franchi F, Muzzi L. Echocardiography and hemodynamic monitoring tools for clinical assessment of patients on mechanical circulatory support. In: Komamura K, editor. Recent advances in the field of ventricular assist devices. Croatia: InTech; 2013.

    Google Scholar 

  65. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34:1123–30.

    Article  PubMed  Google Scholar 

  66. Rich JD. Right ventricular failure in patients with left ventricular assist devices. Cardiol Clin. 2012;30:291–302.

    Article  PubMed  Google Scholar 

  67. Wang TS, Hernandez AF, Felker GM, Milano CA, Rogers JG, Patel CB. Valvular heart disease in patients supported with left ventricular assist devices. Circ Heart Fail. 2014;7:215–22.

    Article  PubMed  Google Scholar 

  68. Morgan JA, Brewer RJ, Nemeh HW, Murthy R, Williams CT, Lanfear DE, et al. Left ventricular reverse remodeling with a continuous flow left ventricular assist device measured by left ventricular end-diastolic dimensions and severity of mitral regurgitation. ASAIO J. 2012;58:574–7.

    Article  PubMed  Google Scholar 

  69. Topilsky Y, Price TN, Atchison FW, Joyce LD. Atypical tamponade hemodynamic in a patient with temporary left ventricular assist device. Interact Cardiovasc Thorac Surg. 2011;12:832–4.

    Article  PubMed  Google Scholar 

  70. Kimmaliardjuk DM, Ruel M. Cardiac passive-aggressive behavior? The right ventricle in patients with a left ventricular assist device. Expert Rev Cardiovasc Ther. 2017;15:267–76.

    Article  CAS  PubMed  Google Scholar 

  71. Irwin Z, Cook JO. Advances in point-of-care thoracic ultrasound. Emerg Med Clin North Am. 2016;34:151–7.

    Article  PubMed  Google Scholar 

  72. Harvey L, Holley C, Roy SS, Eckman P, Cogswell R, Liao K, et al. Stroke after left ventricular assist device implantation: outcomes in the continuous-flow era. Ann Thorac Surg. 2015;100:535–41.

    Article  PubMed  Google Scholar 

  73. Cheng A, Swartz MF, Massey HT. VADoscopy: a novel intraoperative technique to evaluate HeartMate II left ventricular assist device inflow obstruction and thrombosis. ASAIO J. 2013;59:671–4.

    Article  PubMed  Google Scholar 

  74. Doligalski CT, Jennings DL. Device-related thrombosis in continuous-flow left ventricular assist device support. J Pharm Pract. 2016;29:58–66.

    Article  PubMed  Google Scholar 

  75. Toeg H, Ruel M, Haddad H. Anticoagulation strategies for left ventricular assist devices. Curr Opin Cardiol. 2015;30:192–196.

    Google Scholar 

  76. Shinar Z, Bellezzo J, Stahovich M, Cheskes S, Chillcott S, Dembitsky W. Chest compressions may be safe in arresting patients with left ventricular assist devices (LVADs). Resuscitation. 2014;85:702–4.

    Article  PubMed  Google Scholar 

  77. Bartoli CR, Ghotra AS, Pachika AR, Birks EJ, McCants KC. Hematologic markers better predict left ventricular assist device thrombosis than echocardiographic or pump parameters. Thorac Cardiovasc Surg. 2014;62:414–8.

    Article  PubMed  Google Scholar 

  78. Garan AR, Levin AP, Topkara V, Thomas SS, Yuzefpolskaya M, Colombo PC, et al. Early post-operative ventricular arrhythmias in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34:1611–6.

    Article  PubMed  Google Scholar 

  79. Healy C, Viles-Gonzalez JF, Sacher F, Coffey JO, d'Avila A. Management of ventricular arrhythmias in patients with mechanical ventricular support devices. Curr Cardiol Rep. 2015;17:59.

    Article  PubMed  Google Scholar 

  80. McIlvennan CK, Magid KH, Ambardekar AV, Thompson JS, Matlock DD, Allen LA. Clinical outcomes after continuous-flow left ventricular assist device: a systematic review. Circ Heart Fail. 2014;7:1003–13.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schleifer JW, Mookadam F, Kransdorf EP, Nanda U, Adams JC, Cha S, et al. Effect of continued cardiac resynchronization therapy on ventricular arrhythmias after left ventricular assist device implantation. Am J Cardiol. 2016;118:556–9.

    Article  PubMed  Google Scholar 

  82. Enriquez AD, Calenda B, Gandhi PU, Nair AP, Anyanwu AC, Pinney SP. Clinical impact of atrial fibrillation in patients with the HeartMate II left ventricular assist device. J Am Coll Cardiol. 2014;64:1883–90.

    Article  PubMed  Google Scholar 

  83. Wann LS, Curtis AB, January CT, Ellenbogen KA, Lowe JE, Estes NA 3rd, et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (updating the 2006 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2011;57:223–42.

    Article  PubMed  Google Scholar 

  84. Radiovancevic R, Radovancevic B, Bracey A, Riggs S, Frazier OH. Coagulations parameters in patients undergoing left ventricular assist device implantation. ASAIO J. 2001;47:134.

    Article  Google Scholar 

  85. Radovancevic B, Bracey AW, Riggs SA, Radovancevic R, Frazier OH. Left ventricular assist devices and bleeding diatheses: hematologic and medical issues. Journal of Congestive Heart Failure & Circulatory Support. 2001;2:13–7.

    Article  Google Scholar 

  86. Bunte MC, Blackstone EH, Thuita L, Fowler J, Joseph L, Ozaki A, et al. Major bleeding during HeartMate II support. J Am Coll Cardiol. 2013;62:2188–96.

    Article  PubMed  Google Scholar 

  87. Haglund NA, Davis ME, Tricarico NM, Ahmad RM, DiSalvo TG, Keebler ME, et al. Perioperative blood product use: a comparison between HeartWare and HeartMate II devices. Ann Thorac Surg. 2014;98:842–9.

    Article  PubMed  Google Scholar 

  88. Myles PS, Smith JA, Forbes A, Silbert B, Jayarajah M, Painter T, et al. Stopping vs. continuing aspirin before coronary artery surgery. N Engl J Med. 2016;374:728–37.

    Article  CAS  PubMed  Google Scholar 

  89. Society of Thoracic Surgeons Blood Conservation Guideline Task F, Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–82.

    Article  Google Scholar 

  90. Chokshi A, Cheema FH, Schaefle KJ, Jiang J, Collado E, Shahzad K, et al. Hepatic dysfunction and survival after orthotopic heart transplantation: application of the MELD scoring system for outcome prediction. J Heart Lung Transplant. 2012;31:591–600.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tamim H, Habbal M, Saliba A, Musallam K, Al-Taki M, Hoballah J, et al. Preoperative INR and postoperative major bleeding and mortality: a retrospective cohort study. J Thromb Thrombolysis. 2016;41:301–11.

    Article  PubMed  Google Scholar 

  92. Meehan R, Tavares M, Sweeney J. Clinical experience with oral versus intravenous vitamin K for warfarin reversal. Transfusion. 2013;53:491–8. quiz 490

    Article  CAS  PubMed  Google Scholar 

  93. Sarode R, Milling TJ Jr, Refaai MA, Mangione A, Schneider A, Durn BL, et al. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation. 2013;128:1234–43.

    CAS  PubMed  Google Scholar 

  94. Marshall AL, Levine M, Howell ML, Chang Y, Riklin E, Parry BA, et al. Dose-associated pulmonary complication rates after fresh frozen plasma administration for warfarin reversal. J Thromb Haemost. 2016;14:324–30.

    Article  CAS  PubMed  Google Scholar 

  95. Douketis JD, Woods K, Foster GA, Crowther MA. Bridging anticoagulation with low-molecular-weight heparin after interruption of warfarin therapy is associated with a residual anticoagulant effect prior to surgery. Thromb Haemost. 2005;94:528–31.

    CAS  PubMed  Google Scholar 

  96. Nuttall GA, Oliver WC, Santrach PJ, Bryant S, Dearani JA, Schaff HV, et al. Efficacy of a simple intraoperative transfusion algorithm for nonerythrocyte component utilization after cardiopulmonary bypass. Anesthesiology. 2001;94:773–81. discussion 5A–6A

    Article  CAS  PubMed  Google Scholar 

  97. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88:312–9.

    CAS  PubMed  Google Scholar 

  98. Haas T, Spielmann N, Mauch J, Madjdpour C, Speer O, Schmugge M, et al. Comparison of thromboelastometry (ROTEM(R)) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth. 2012;108:36–41.

    Article  CAS  PubMed  Google Scholar 

  99. Despotis GJ, Gravlee G, Filos K, Levy J. Anticoagulation monitoring during cardiac surgery: a review of current and emerging techniques. Anesthesiology. 1999;91:1122–51.

    Article  CAS  PubMed  Google Scholar 

  100. Rahe-Meyer N, Pichlmaier M, Haverich A, Solomon C, Winterhalter M, Piepenbrock S, et al. Bleeding management with fibrinogen concentrate targeting a high-normal plasma fibrinogen level: a pilot study. Br J Anaesth. 2009;102:785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino V 3rd, et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg. 2010;90:1263–9. discussion 1269

    Article  PubMed  Google Scholar 

  102. Jilma-Stohlawetz P, Quehenberger P, Schima H, Stoiber M, Knobl P, Steinlechner B, et al. Acquired von Willebrand factor deficiency caused by LVAD is ADAMTS-13 and platelet dependent. Thromb Res. 2016;137:196–201.

    Article  CAS  PubMed  Google Scholar 

  103. Warkentin TE. Heparin-induced thrombocytopenia. Curr Opin Crit Care. 2015;21:576–85.

    Article  PubMed  Google Scholar 

  104. Crowther MA, Cook DJ, Albert M, Williamson D, Meade M, Granton J, et al. The 4Ts scoring system for heparin-induced thrombocytopenia in medical-surgical intensive care unit patients. J Crit Care. 2010;25:287–93.

    Article  PubMed  Google Scholar 

  105. Morgan JA, Brewer RJ, Nemeh HW, Gerlach B, Lanfear DE, Williams CT, et al. Stroke while on long-term left ventricular assist device support: incidence, outcome, and predictors. ASAIO J. 2014;60:284–9.

    Article  PubMed  Google Scholar 

  106. Pagani FD, Milano CA, Tatooles AJ, Bhat G, Slaughter MS, Birks EJ, et al. HeartWare HVAD for the treatment of patients with advanced heart failure ineligible for cardiac transplantation: results of the ENDURANCE destination therapy trial. J Heart Lung Transplant. 2015;34:S9.

    Article  Google Scholar 

  107. Willey JZ, Demmer RT, Takayama H, Colombo PC, Lazar RM. Cerebrovascular disease in the era of left ventricular assist devices with continuous flow: risk factors, diagnosis, and treatment. J Heart Lung Transplant. 2014;33:878–87.

    Article  PubMed  Google Scholar 

  108. Willey JZ, Gavalas MV, Trinh PN, Yuzefpolskaya M, Reshad Garan A, Levin AP, et al. Outcomes after stroke complicating left ventricular assist device. J Heart Lung Transplant. 2016;35:1003–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Baba A, Hirata G, Yokoyama F, Kenmoku K, Tsuchiya M, Kyo S, et al. Psychiatric problems of heart transplant candidates with left ventricular assist devices. J Artif Organs. 2006;9:203–8.

    Article  PubMed  Google Scholar 

  110. Demirozu ZT, Etheridge WB, Radovancevic R, Frazier OH. Results of HeartMate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J Heart Lung Transplant. 2011;30:182–7.

    Article  PubMed  Google Scholar 

  111. Ford RM, Book W, Spivey JR. Liver disease related to the heart. Transplant Rev (Orlando). 2015;29:33–7.

    Article  Google Scholar 

  112. Kaltenmaier B, Pommer W, Kaufmann F, Hennig E, Molzahn M, Hetzer R. Outcome of patients with ventricular assist devices and acute renal failure requiring renal replacement therapy. ASAIO J. 2000;46:330–3.

    Article  CAS  PubMed  Google Scholar 

  113. Topkara VK, Dang NC, Barili F, Cheema FH, Martens TP, George I, et al. Predictors and outcomes of continuous veno-venous hemodialysis use after implantation of a left ventricular assist device. J Heart Lung Transplant. 2006;25:404–8.

    Article  PubMed  Google Scholar 

  114. Stulak JM, Davis ME, Haglund N, Dunlay S, Cowger J, Shah P, et al. Adverse events in contemporary continuous-flow left ventricular assist devices: a multi-institutional comparison shows significant differences. J Thorac Cardiovasc Surg. 2016;151:177–89.

    Article  PubMed  Google Scholar 

  115. Badami A, Fehrenbach Prell EA, Murray MA, Johnson MR, Akhter SA, Lozonschi L, et al. A novel approach to prevent post-operative ileus after continuous-flow left ventricular assist device implantation: a retrospective cohort study. Int J Surg. 2015;20:135–9.

    Article  PubMed  Google Scholar 

  116. Vercaemst L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J Extra Corpor Technol. 2008;40:257–67.

    PubMed  PubMed Central  Google Scholar 

  117. Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293:1653–62.

    Article  CAS  PubMed  Google Scholar 

  118. Wetz AJ, Richardt EM, Schotola H, Bauer M, Brauer A. Haptoglobin and free haemoglobin during cardiac surgery-is there a link to acute kidney injury? Anaesth Intensive Care. 2017;45:58–66.

    CAS  PubMed  Google Scholar 

  119. Awad H, Bryant R, Malik O, Dimitrova G, Sai-Sudhakar CB. Thrombosis during off pump LVAD placement in a patient with heparin induced thrombocytopenia using bivalirudin. J Cardiothorac Surg. 2013;8:115.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Omar AS, Salama A, Allam M, Elgohary Y, Mohammed S, Tuli AK, et al. Association of time in blood glucose range with outcomes following cardiac surgery. BMC Anesthesiol. 2015;15:14.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cagliostro B, Levin AP, Fried J, Stewart S, Parkis G, Mody KP, et al. Continuous-flow left ventricular assist devices and usefulness of a standardized strategy to reduce drive-line infections. J Heart Lung Transplant. 2016;35:108–14.

    Article  PubMed  Google Scholar 

  122. Gordon RJ, Quagliarello B, Lowy FD. Ventricular assist device-related infections. Lancet Infect Dis. 2006;6:426–37.

    Article  PubMed  Google Scholar 

  123. Maniar S, Kondareddy S, Topkara VK. Left ventricular assist device-related infections: past, present and future. Expert Rev Med Devices. 2011;8:627–34.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Schaffer JM, Allen JG, Weiss ES, Arnaoutakis GJ, Patel ND, Russell SD, et al. Infectious complications after pulsatile-flow and continuous-flow left ventricular assist device implantation. J Heart Lung Transplant. 2011;30:164–74.

    Article  PubMed  Google Scholar 

  125. McDonald EG, Milligan J, Frenette C, Lee TC. Continuous proton pump inhibitor therapy and the associated risk of recurrent Clostridium difficile infection. JAMA Intern Med. 2015;175:784–91.

    Article  PubMed  Google Scholar 

  126. Quader M, LaPar DJ, Wolfe L, Ailawadi G, Rich J, Speir A, et al. Delayed sternal closure after continuous flow left ventricle assist device implantation: analysis of risk factors and impact on outcomes and costs. ASAIO J. 2016;62:432–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Herlihy M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ayyagari, K., Mulvoy, W.P., Bracey, A.W., Castillo, C.A., Herlihy, J.P. (2018). Perioperative Management of LVAD Patients. In: Morgan, J., Civitello, A., Frazier, O. (eds) Mechanical Circulatory Support for Advanced Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-319-65364-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65364-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65363-1

  • Online ISBN: 978-3-319-65364-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics