Skip to main content

Bridge-to-Bridge Strategies with IABP, Impella, and TandemHeart

  • Chapter
  • First Online:
Mechanical Circulatory Support for Advanced Heart Failure

Abstract

As our awareness of long-term consequences of advanced heart failure improves, there has been an institutional push to pursue durable solutions for these failing hearts. These solutions include left ventricular assist device (LVAD) implantation as a destination therapy or as bridge to transplantation, as well as listing for orthotropic heart transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adamo L, et al. The HeartMate Risk Score identifies patients with similar mortality risk across all INTERMACS profiles in a large multicenter analysis. JACC Heart Fail. 2016;4(12):950–8.

    Article  PubMed  Google Scholar 

  2. Adamo L, et al. The Heartmate Risk Score predicts morbidity and mortality in unselected left ventricular assist device recipients and risk stratifies INTERMACS class 1 patients. JACC Heart Fail. 2015;3(4):283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trachtenberg BH, Estep JD. Roads, maps, and destinations: the journey of left ventricular assist device implantation in ambulatory patients with advanced heart failure. Curr Cardiol Rep. 2016;18(12):132.

    Article  PubMed  Google Scholar 

  4. Starling RC, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: the ROADMAP study 2-year results. JACC Heart Fail. 2017;5(7):518–27.

    Article  PubMed  Google Scholar 

  5. Kirklin JK, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–504.

    Article  PubMed  Google Scholar 

  6. Boyle AJ, et al. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant. 2011;30(4):402–7.

    Article  PubMed  Google Scholar 

  7. Oz MC, et al. Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices. Circulation. 1995;92(9 Suppl):II169–73.

    Article  CAS  PubMed  Google Scholar 

  8. Oz MC, Rose EA, Levin HR. Selection criteria for placement of left ventricular assist devices. Am Heart J. 1995;129(1):173–7.

    Article  CAS  PubMed  Google Scholar 

  9. Shah P, et al. Clinical outcomes of advanced heart failure patients with cardiogenic shock treated with temporary circulatory support before durable LVAD implant. ASAIO J. 2016;62(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  10. Hochman JS, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341(9):625–34.

    Article  CAS  PubMed  Google Scholar 

  11. Thiele H, et al. Intraaortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock: design and rationale of the Intraaortic Balloon Pump in Cardiogenic Shock II (IABP-SHOCK II) trial. Am Heart J. 2012;163(6):938–45.

    Article  PubMed  Google Scholar 

  12. Esposito ML, Kapur NK. Acute mechanical circulatory support for cardiogenic shock: the “door to support” time. F1000Res. 2017;6:737.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mandawat A, Rao SV. Percutaneous mechanical circulatory support devices in cardiogenic shock. Circ Cardiovasc Interv. 2017;10(5).

    Google Scholar 

  14. Landis ZC, et al. Severity of end-organ damage as a predictor of outcomes after implantation of left ventricular assist device. ASAIO J. 2015;61(2):127–32.

    Article  PubMed  Google Scholar 

  15. Werdan K, et al. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35(3):156–67.

    Article  CAS  PubMed  Google Scholar 

  16. Menees DS, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med. 2013;369(10):901–9.

    Article  CAS  PubMed  Google Scholar 

  17. McNamara RL, et al. Predicting in-hospital mortality in patients with acute myocardial infarction. J Am Coll Cardiol. 2016;68(6):626–35.

    Article  PubMed  Google Scholar 

  18. Wayangankar SA, et al. Temporal trends and outcomes of patients undergoing percutaneous coronary interventions for cardiogenic shock in the setting of acute myocardial infarction: a report from the CathPCI Registry. JACC Cardiovasc Interv. 2016;9(4):341–51.

    Article  PubMed  Google Scholar 

  19. Rihal CS, et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention. J Am Coll Cardiol. 2015;65(19):e7–26.

    Article  PubMed  Google Scholar 

  20. Basir MB, et al. Effect of early initiation of mechanical circulatory support on survival in cardiogenic shock. Am J Cardiol. 2017;119(6):845–51.

    Article  PubMed  Google Scholar 

  21. Morine KJ, Kapur NK. Percutaneous mechanical circulatory support for cardiogenic shock. Curr Treat Options Cardiovasc Med. 2016;18(1):6.

    Article  PubMed  Google Scholar 

  22. de Waha S, et al. Intra-aortic balloon counterpulsation—basic principles and clinical evidence. Vascul Pharmacol. 2014;60(2):52–6.

    Article  PubMed  Google Scholar 

  23. Papaioannou TG, Stefanadis C. Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. ASAIO J. 2005;51(3):296–300.

    Article  PubMed  Google Scholar 

  24. Kern MJ, et al. Augmentation of coronary blood flow by intra-aortic balloon pumping in patients after coronary angioplasty. Circulation. 1993;87(2):500–11.

    Article  CAS  PubMed  Google Scholar 

  25. Koudoumas D, et al. Long-term intra-aortic balloon pump support as bridge to left ventricular assist device implantation. J Card Surg. 2016;31(7):467–71.

    Article  PubMed  Google Scholar 

  26. Norkiene I, et al. Intra-aortic balloon counterpulsation in decompensated cardiomyopathy patients: bridge to transplantation or assist device. Interact Cardiovasc Thorac Surg. 2007;6(1):66–70.

    Article  PubMed  Google Scholar 

  27. Sintek MA, et al. Intra-aortic balloon counterpulsation in patients with chronic heart failure and cardiogenic shock: clinical response and predictors of stabilization. J Card Fail. 2015;21(11):868–76.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Annamalai SK, et al. Acute hemodynamic effects of intra-aortic balloon counterpulsation pumps in advanced heart failure. J Card Fail. 2017;23(8):606–14.

    Article  PubMed  Google Scholar 

  29. den Uil CA, et al. First-line support by intra-aortic balloon pump in non-ischaemic cardiogenic shock in the era of modern ventricular assist devices. Cardiology. 2017;138(1):1–8.

    Article  Google Scholar 

  30. Imamura T, et al. Prophylactic intra-aortic balloon pump before ventricular assist device implantation reduces perioperative medical expenses and improves postoperative clinical course in INTERMACS profile 2 patients. Circ J. 2015;79(9):1963–9.

    Article  PubMed  Google Scholar 

  31. Basra SS, Loyalka P, Kar B. Current status of percutaneous ventricular assist devices for cardiogenic shock. Curr Opin Cardiol. 2011;26(6):548–54.

    Article  PubMed  Google Scholar 

  32. Seyfarth M, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52(19):1584–8.

    Article  PubMed  Google Scholar 

  33. Ouweneel DM, et al. Experience from a randomized controlled trial with Impella 2.5 versus IABP in STEMI patients with cardiogenic pre-shock. Lessons learned from the IMPRESS in STEMI trial. Int J Cardiol. 2016;202:894–6.

    Article  CAS  PubMed  Google Scholar 

  34. Lackermair K, et al. Retrospective analysis of circulatory support with the Impella CP(R) device in patients with therapy refractory cardiogenic shock. Int J Cardiol. 2016;219:200–3.

    Article  CAS  PubMed  Google Scholar 

  35. Lima B, et al. Effectiveness and safety of the Impella 5.0 as a bridge to cardiac transplantation or durable left ventricular assist device. Am J Cardiol. 2016;117(10):1622–8.

    Article  PubMed  Google Scholar 

  36. Schibilsky D, et al. Impella 5.0 support in INTERMACS II cardiogenic shock patients using right and left axillary artery access. Artif Organs. 2015;39(8):660–3.

    Article  PubMed  Google Scholar 

  37. Bansal A, et al. Using the minimally invasive Impella 5.0 via the right subclavian artery cutdown for acute on chronic decompensated heart failure as a bridge to decision. Ochsner J. 2016;16(3):210–6.

    PubMed  PubMed Central  Google Scholar 

  38. Lauten A, et al. Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: results of the Impella-EUROSHOCK-registry. Circ Heart Fail. 2013;6(1):23–30.

    Article  PubMed  Google Scholar 

  39. Kapur NK, et al. Hemodynamic effects of left atrial or left ventricular cannulation for acute circulatory support in a bovine model of left heart injury. ASAIO J. 2015;61(3):301–6.

    Article  PubMed  Google Scholar 

  40. Kar B, et al. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57(6):688–96.

    Article  PubMed  Google Scholar 

  41. Burkhoff D, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152(3):469 e1–8.

    Article  Google Scholar 

  42. Idelchik GM, et al. Use of the percutaneous left ventricular assist device in patients with severe refractory cardiogenic shock as a bridge to long-term left ventricular assist device implantation. J Heart Lung Transplant. 2008;27(1):106–11.

    Article  PubMed  Google Scholar 

  43. Bruckner BA, et al. Clinical experience with the TandemHeart percutaneous ventricular assist device as a bridge to cardiac transplantation. Tex Heart Inst J. 2008;35(4):447–50.

    PubMed  PubMed Central  Google Scholar 

  44. Schmidt M, et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J. 2015;36(33):2246–56.

    Article  CAS  PubMed  Google Scholar 

  45. Abrams D, Combes A, Brodie D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J Am Coll Cardiol. 2014;63(25 Pt A):2769–78.

    Article  PubMed  Google Scholar 

  46. Guenther S, et al. Percutaneous extracorporeal life support for patients in therapy refractory cardiogenic shock: initial results of an interdisciplinary team. Interact Cardiovasc Thorac Surg. 2014;18(3):283–91.

    Article  PubMed  Google Scholar 

  47. Guenther SPW, Brunner S, Born F, Fischer M, Schramm R, Pichlmaier M, et al. When all else fails: extracorporeal life support in therapy-refractory cardiogenic shock. Eur J Cardiothorac Surg. 2016;49:802–9.

    Article  PubMed  Google Scholar 

  48. Schibilsky D, et al. Extracorporeal life support prior to left ventricular assist device implantation leads to improvement of the patients INTERMACS levels and outcome. PLoS One. 2017;12(3):e0174262.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marasco SF, et al. Extracorporeal life support bridge to ventricular assist device: the double bridge strategy. Artif Organs. 2016;40(1):100–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joggy George M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheth, S., Bandeali, S., George, J. (2018). Bridge-to-Bridge Strategies with IABP, Impella, and TandemHeart. In: Morgan, J., Civitello, A., Frazier, O. (eds) Mechanical Circulatory Support for Advanced Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-319-65364-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65364-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65363-1

  • Online ISBN: 978-3-319-65364-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics