Skip to main content

A General Concept of Dynamic Materials

  • Chapter
  • First Online:
An Introduction to the Mathematical Theory of Dynamic Materials

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 15))

  • 862 Accesses

Abstract

Dynamic materials (DM) are defined as structures with parameters variable in space and time. Equivalent definition introduces DM as a union of material framework and the mass/momentum/energy fluxes between it and the environment. It is a thermodynamically open system supported by a non-stop exchange of said quantities.

Two conceptually different types of DM (activated and kinetic) are introduced in this chapter on the intuitive basis (this classification formalized in ChapterĀ 3). DM have very dissimilar realizations, embracing such entirely different objects as the living tissue and traffic flow, along with sophisticated electromagnetic and/or mechanical devices produced by modern technology and briefly illustrated in the text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Salih, S., Elata, D.: Experimental validation of electromechanical buckling, IEEE J. Microelectromech. Syst. 15, 1656ā€“1662 (2006)

    ArticleĀ  Google ScholarĀ 

  2. Acar, C., Shkel, A.M.: MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, New York (2009)

    BookĀ  Google ScholarĀ 

  3. Andrianov, I.V., Danishevsā€™kyy, V.V., Kalamkarov, A.L.: Vibration localization in one-dimensional linear and nonlinear lattices: discrete and continuum models. Nonlinear Dyn. 72, 37ā€“48 (2013)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Bao, J.E., Zhou, J.: Nonlinear magnetic properties of Mn-modified B a 3 C o 2 F e 23 O 41 hexaferrite. IEEE Trans. Magn. 40(4), 1947ā€“1951 (2004)

    ArticleĀ  Google ScholarĀ 

  5. Baruch, H.: Analytical Dynamics. WCB/McGraw Hill, New York (1999)

    Google ScholarĀ 

  6. Batra, R.C., Porfiri, M., Spinello, D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16, R23ā€“R31 (2007)

    ArticleĀ  Google ScholarĀ 

  7. Biswas, A., Kara, A.H., Bokhari, A.H., Zaman, F.D.: Solitons and conservation laws of Klein-Gordon equation with power law and log law nonlinearities. Nonlinear Dyn. 73, 2191ā€“2196 (2013)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamics Effects, General Approach, Applications. World Scientific, Singapore (1999)

    Google ScholarĀ 

  9. Blekhman, I.I., Lurie, K.A.: On dynamic materials. Proc. Rus. Acad. Sci. (Doklady) 37, 182ā€“185 (2000)

    Google ScholarĀ 

  10. Blekhman, I.I.: On vibrational dynamic materials and composites. Proc. Russ. Acad. Sci. (Doklady) 414, 618 (2007)

    Google ScholarĀ 

  11. Braghin, F., Resta, F., Leo, E., Spinola, G.: Nonlinear dynamics of vibrating MEMS, Sensors Actuators A 134, 98ā€“108 (2007)

    ArticleĀ  Google ScholarĀ 

  12. Bromberg, Y., Cross, M.C., Lifshitz, R.: Response of discrete nonlinear systems with many degrees of freedom. Phys. Rev. E 73, 016214 (2006)

    ArticleĀ  Google ScholarĀ 

  13. Buks, E. Roukes, M.L.: Electrically tunable collective response in a coupled micromechanical array. IEEE J. Microelectron. Syst. 11, 802ā€“807 (2002)

    ArticleĀ  Google ScholarĀ 

  14. Castaner, L.M., Senturia S.D.: Speed-energy optimization of electrostatic actuators based on pull-in. J. Microelectromech. Syst. 8, 290ā€“298 (1999)

    ArticleĀ  Google ScholarĀ 

  15. Chen, Q., Huang, L., Lai, Y.C.: Chaos-induced intrinsic localized modes in coupled microcantilever arrays. Appl. Phys. Lett. 92, 241914 (2008)

    ArticleĀ  Google ScholarĀ 

  16. Cherkaev, A.V.: Variational Methods for Structural Optimization, pp. xii + 627. Springer, New York (2000)

    Google ScholarĀ 

  17. Choubey B., Boyd, E., Armstrong, I., Uttamchandani, D.: Determination of the anisotropy of Youngā€™s modulus using a coupled microcantilever array. IEEE J. Microelectron. Syst. 21, 1252 (2012)

    ArticleĀ  Google ScholarĀ 

  18. DeMartini, B.E., Butterfield, H.E., Moehlis, J., Turner, K.L.: Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation, IEEE J. Microelectromech. Syst. 16, 1314ā€“1323 (2007)

    ArticleĀ  Google ScholarĀ 

  19. DeMartini, B.E., Rhoads, J.F., Zielke, M.A., Owen, K.G., Shaw, S.W., Turner, K.L.: A single input-single output coupled microresonator array for the detection and identification of multiple analytes. Appl. Phys. Lett. 93, 054102 (2008)

    ArticleĀ  Google ScholarĀ 

  20. Dick, A.J., Balachandran, B., Mote Jr., C.D.: Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes. Nonlinear Dyn. 54, 13ā€“29 (2008)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  21. Dick, A.J., Balachandran, B., Mote Jr., C.D.: Localization in microresonator arrays: influence of natural frequency tuning. J. Comput. Nonlinear Dyn. 5, 011002-1ā€“011002-11 (2010)

    Google ScholarĀ 

  22. Eleftheriades, G., Balmain, K.: Negative-Index Metamaterials: Fundamental Principles and Applications, Wiley-IEEE, Hoboken (2005)

    BookĀ  Google ScholarĀ 

  23. Eleftheriades, G.V., Iyer, A.K., Kremer, P.C.: Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microwave Theory Tech. 50(12), 2702ā€“2712 (2002)

    ArticleĀ  Google ScholarĀ 

  24. Fan, K., Padilla, W.F.: Dynamic electromagnetic metamaterials. Mater. Today 18(1), 39ā€“50 (2015)

    ArticleĀ  Google ScholarĀ 

  25. Feng, C., Gore, K.: Dynamic characteristics of vibratory gyroscopes. IEEE Sensors J. 4(1), 80ā€“84 (2004)

    ArticleĀ  Google ScholarĀ 

  26. Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123ā€“R152 (2005)

    ArticleĀ  Google ScholarĀ 

  27. Gad-el-Hak, M.: MEMS Handbook. A CRC Press Company, Boca Raton (2002)

    MATHĀ  Google ScholarĀ 

  28. Gendelman, O.V.: Exact solutions for discrete breathers in a forced-damped chain. Phys. Rev. E 87, 062911 (2013)

    ArticleĀ  Google ScholarĀ 

  29. Glean, A.A., Vignola, J.F., Judge, J.A., Ryan, T.J.: Mass sensing using the time-domain response of a MEMS structure with a functionalized subordinate oscillator array. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), Portland, OR, USA, August 4ā€“7, 2013. pap. DETC2013-13394

    Google ScholarĀ 

  30. Gupta, K.G., Senturia, S.D.: Pull-in dynamics as a measure of the ambient pressure. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Piscataway, NJ, pp. 290ā€“294 (1997)

    Google ScholarĀ 

  31. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67, 1ā€“36 (2012)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  32. Harish, K.M., Gallacher, B.J., Burdess, J.S., Neasham, J.A.: Experimental investigation of parametric and externally forced motion in resonant MEMS sensors. J. Micromech. Microeng. 19, 015021 (2009)

    ArticleĀ  Google ScholarĀ 

  33. Hong, Y., Kim, S., Lee, J.H.: Modeling of angular-rate bandwidth for a vibrating microgyroscope. Microsyst. Technol. 9, 441ā€“448 (2003)

    ArticleĀ  Google ScholarĀ 

  34. Hontsu, S., Nishikawa, N., Nakai, N., et al.: Preparation of all-oxide ferromagnetic/ferroelectric/superconducting heterostructures for advance microwave applications. Supercond. Sci. Tech. 12, 836ā€“839 (1999)

    ArticleĀ  Google ScholarĀ 

  35. Hu, Z., Gallacher, B.J., Harish, K.M., Burdess, J.S.: An experimental study of high gain parametric amplification in MEMS. Sensors Actuators A 162, 145ā€“154 (2010)

    ArticleĀ  Google ScholarĀ 

  36. Ilic, B., Craighead, H.G., Krylov, S., Senaratne, W., Ober C., Neuzil, P.: Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95(7), 3694ā€“3703 (2004)

    ArticleĀ  Google ScholarĀ 

  37. Ilic, B., Yang, Y., Aubin, K., Reichenbach R., Krylov, S., Craighead, H.: Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 5(5), 925ā€“929 (2005)

    ArticleĀ  Google ScholarĀ 

  38. Jayaprakash, K.R., Vakakis, A.F., Starosvetsky, Y.: Solitary waves in a general class of granular dimer chains. J. Appl. Phys. 112, 034908 (2012)

    ArticleĀ  Google ScholarĀ 

  39. Joe, D.J., Linzon, Y., Adiga,V.P., Barton, R.A., Kim, M., Ilic, B.R., Krylov, S.J., Parpia, M., Craighead, H.G.: Stress-based resonant volatile gas microsensor operated near the critically-buckled state. J. Appl. Phys. 111(10), 104517 (2012)

    ArticleĀ  Google ScholarĀ 

  40. Jona, F., Shirane, G.: Ferroelectric Crystals. Dover, New York (1993)

    Google ScholarĀ 

  41. Judy, J.W.: Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10, 1115ā€“1134 (2001)

    ArticleĀ  Google ScholarĀ 

  42. Kempe,V.: Inertial MEMS: Principles and Practice, Cambridge University Press, Cambridge (2011)

    BookĀ  Google ScholarĀ 

  43. Kenig, E., Lifshitz, R., Cross, M.C.: Pattern selection in parametrically driven arrays of nonlinear resonators. Phys. Rev. E 79, 026203 (2009)

    ArticleĀ  Google ScholarĀ 

  44. Kenig, E., Malomed, B.A., Cross, M.C., Lifshitz R.: Intrinsic localized modes in parametrically driven arrays of nonlinear resonators. Phys. Rev. E 80, 046202 (2009)

    ArticleĀ  Google ScholarĀ 

  45. Krylov, S.: Lyapunov exponents as a criterion for the dynamic pull-In instability of electrostatically actuated microstructures. Int. J. Nonlinear Mech. 42, 626ā€“642 (2007)

    ArticleĀ  Google ScholarĀ 

  46. Krylov, S.: Parametric excitation and stabilization of electrostatically actuated microstructures. Int. J. Multiscale Comput. Eng. 6(6), 563ā€“584 (2008)

    ArticleĀ  Google ScholarĀ 

  47. Krylov, S., Maimon, R.: Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. J. Vib. Acoust. 126, 332ā€“342 (2004)

    ArticleĀ  Google ScholarĀ 

  48. Krylov,V., Sorokin, S.V.: Dynamics of elastic beams with controlled distributed stiffness parameters. Smart Mater. Struct. 6, 573ā€“582 (1997)

    ArticleĀ  Google ScholarĀ 

  49. Krylov S., Harari, I., Cohen, Y.: Stabilisation of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15, 1188ā€“1204 (2005)

    ArticleĀ  Google ScholarĀ 

  50. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.: Pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)

    ArticleĀ  Google ScholarĀ 

  51. Krylov, S., Gerson, Y., Nachmias, T., Keren, U.: Excitation of large amplitude parametric resonance by the mechanical stiffness modulation of a microstructure. J. Micromech. Microeng. 20, 015041 (2010)

    ArticleĀ  Google ScholarĀ 

  52. Krylov, S., Molinazzy, N., Shmilovich, T., Pomerantz, U., Lulinsky, S.: Parametric excitation of flexural vibrations of micro beams by fringing electrostatic fields. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, Montreal, Quebec, Canada (2010)

    Google ScholarĀ 

  53. Krylov, S., Ilic, B., Lulinsky, S.: Bistability of curved micro beams actuated by fringing electrostatic fields. Nonlinear Dyn. 66(3), 403ā€“426 (2011)

    ArticleĀ  Google ScholarĀ 

  54. Krylov, S., Lurie, K., Yaā€™akobovitz, A.: Compliant structures with time-varying moment of inertia and non-zero averaged momentum and their application in angular rate microsensors. J. Sound Vib. 330, 4875ā€“4895 (2011)

    ArticleĀ  Google ScholarĀ 

  55. Lang, W.: Reflections on the future microsystems. Sensors Actuators A 72 1ā€“15 (1999)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  56. Lange, D., Brand, O., Baltes, H.: Cantilever-Based CMOS Sensor Systems, Atomic Force Microscopy and Gas Sensing Applications, Springer, Berlin/Heidelberg (2002)

    BookĀ  Google ScholarĀ 

  57. Lenci, S., Rega, G.: Control of pull-In dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16, 390ā€“401 (2006)

    ArticleĀ  Google ScholarĀ 

  58. Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003)

    ArticleĀ  Google ScholarĀ 

  59. Lifshitz, R., Cross, M.C.: Nonlinear dynamics of nanomechanical and micromechanical resonators. In: Shuster, H.G. (ed.) Review of Nonlinear Dynamics and Complexity. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)

    Google ScholarĀ 

  60. Liu, K., Zhang, W., Chen, W., Li, K., Dai, F., Cui, F., Wu, X., Ma, G., Xiao, Q.: The development of micro-gyroscope technology. J. Micromech. Microeng. 19, 113001 (2009)

    ArticleĀ  Google ScholarĀ 

  61. Luo, A.C.J., Wang, F.Y.: Chaotic motion in a micro-electro-mechanical system with non-linearity from capacitors. Commun. Nonlinear Sci. Numer. Simul. 7, 31ā€“49 (2002)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  62. Lurie, K.A.: Applied Optimal Control of Distributed Systems, p. 499. Plenum Press, New York (1993)

    Google ScholarĀ 

  63. Lurie, K.A.: Effective properties of smart elastic laminates and the screening phenomenon. Int.J. Solids Struct. 34, 1633ā€“1643 (1997)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  64. Lurie, K.A.: Bounds for the electromagnetic material properties of a spatio-temporal dielectric polycrystal with respect to one-dimensional wave propagation. Proc. R. Soc. Lond. A 454, 1547ā€“1557 (2000)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  65. Lurie, K.A.: An Introduction to the Mathematical Theory of Dynamic Materials. Springer, New York (2007)

    MATHĀ  Google ScholarĀ 

  66. Lurie, K.A., Weekes, S.L.: Wave propagation and the energy exchange in a spatio-temporal material composite with rectangular microstructure, J. Math. Anal. Appl. 314, 286ā€“310 (2006)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  67. Lurie, K.A., Onofrei, D., Weekes, S.L.: Mathematical analysis of the wave propagation through a rectangular material structure in space-time, J. Math. Anal. Appl. 355, 180ā€“194 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  68. Mestrom, R.M.C., Fey, R.H.B., Phan, K.L., Nijmeijer, H.: Simulations and experiments of hardening and softening resonances in a clamped-clamped beam MEMS resonator. Sensors Actuators A Phys. 162(2)SI, 225ā€“234 (2010)

    Google ScholarĀ 

  69. Milton, G.W.: Theory of Composites, pp. xxvi + 717. Cambridge University Press, Cambridge (2002)

    Google ScholarĀ 

  70. Morgenthaler, F.R.: Velocity modulation of electromagnetic waves. IRE Trans. Microwave Theory Tech. 6, 167ā€“172 (1958)

    ArticleĀ  Google ScholarĀ 

  71. Napoli, M., Baskaran, R., Turner, K.L., Bamieh, B.: Understanding mechanical domain parametric resonance in microcantilevers. In: Proceedings of the IEEE 16th International Annual Conference on MEMS (MEMSā€™ 2003), pp. 169ā€“172 (2003)

    Google ScholarĀ 

  72. Nathanson, H.C., Wickstrom, R.A., Davis, J.R.: The resonant gate transistor. IEEE Trans. Electron Devices 14, 117ā€“133 (1967)

    ArticleĀ  Google ScholarĀ 

  73. Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840ā€“1847 (2005)

    ArticleĀ  Google ScholarĀ 

  74. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153ā€“163 (2007)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  75. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41, 211ā€“236 (2005)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  76. Oropeza-Ramos, L.A., Burgner, C.B., Turner, K.L.: Robust micro-rate sensor actuated by parametric resonance. Sensors Actuators A 152, 80ā€“87 (2009)

    ArticleĀ  Google ScholarĀ 

  77. Pelesko, J.A., Bernstein, D.H.: Modeling of MEMS and NEMS. Chapman & Hall/A CRC Press Company, Boca Raton/London/New York (2002)

    BookĀ  MATHĀ  Google ScholarĀ 

  78. Petersen, K.: A new age for MEMS. In: Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Transdusersā€™05, Seoul, Korea, pp. 1ā€“4 (2005)

    Google ScholarĀ 

  79. Porfiri, M.: Vibrations of parallel arrays of electrostatically actuated microplates. J. Sound Vib. 315, 1071ā€“1085 (2008)

    ArticleĀ  Google ScholarĀ 

  80. Qi, S., Zhou, J., Yue, Z., Gui, Z., Li, L., Buddhudu, S.: A ferroelectric ferromagnetic composite material with significant permeability and permittivity. Adv. Funct. Mater. 14(9), 920ā€“926 (2004)

    ArticleĀ  Google ScholarĀ 

  81. Rand, R.H.: Lecture Notes on Nonlinear Vibrations, version 52. http://www.tam.cornell.edu/randdocs/ (2005)

  82. Randrianandrasana, M.F., Wei, X., Lowe, D.: A preliminary study into emergent behaviours in a lattice of interacting nonlinear resonators and oscillators. Commun. Nonlinear. Sci. Numer. Simul. 16, 2945ā€“2956 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  83. Rebeiz, G.M., Mems, R.F.: Theory Design and Technology. Wiley-Interscience, Hoboken, NJ (2003)

    Google ScholarĀ 

  84. Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16, 890ā€“899 (2006)

    ArticleĀ  Google ScholarĀ 

  85. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. In: Proceedings of the DSCC2008 ASME Dynamic Systems and Control Conference, Ann Arbor, MI, USA, DSCC 2008-2406 (2008)

    Google ScholarĀ 

  86. Ruar, D., GrĆ¼tter, P.: Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699ā€“702 (1991)

    ArticleĀ  Google ScholarĀ 

  87. Ryan, T.J., Judge, J.A., Vignola, J.F., Glean, A.A.: Noise sensitivity of a mass detection method using vibration modes of coupled microcantilever arrays. Appl. Phys. Lett. 101, 043104 (2012)

    ArticleĀ  Google ScholarĀ 

  88. Ryan, T.J., Judge, J.A., Nguyen, H., Glean, A.A., Vignola, J.F.: Experimental demonstration of mass detection using vibration modes of coupled cantilever arrays. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), Portland, OR, USA, August 4ā€“7, 2013. pap. DETC2013-13468

    Google ScholarĀ 

  89. Sabater, A.B.,SAB49 Rhoads, J.F.: Dynamics of globally-, dissipatively coupled resonators. In: Proceedings of the IDETC/CIE 2013, August 4ā€“7, 2013, Portland, Oregon, USA. Pap. DETC2013-12949

    Google ScholarĀ 

  90. Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley-Interscience, Hoboken (1991)

    BookĀ  Google ScholarĀ 

  91. Sato, M., Sievers, A.J.: Visualizing intrinsic localized modes with a nonlinear micromechanical array. Low Temp. Phys. 34, 543ā€“548 (2008)

    ArticleĀ  Google ScholarĀ 

  92. Sato, M., Hubbard, B.E., English, L.Q., Sievers, A.J., Ilic, B. Czaplewski, D.A., Craighead, H.G.: Study of intrinsic localized vibrational modes in micromechanical oscillator arrays. Chaos 13, 702ā€“715 (2003)

    ArticleĀ  Google ScholarĀ 

  93. Sato, M. Hubbard, B.E., Sievers, A.J.: Colloquium: nonlinear energy localization and its manipulation in micromechanical oscillator arrays, Rev. Mod. Phys. 78, 137ā€“157 (2006)

    ArticleĀ  Google ScholarĀ 

  94. Sato, M., Fujita, N., Imai, S., Nishimura, S., Hori, Y., Sievers, A.J.: Manipulation of autoresonant intrinsic localized modes in MEMs arrays. AIP Conf. Proc. 1139, 118ā€“127 (2011)

    ArticleĀ  Google ScholarĀ 

  95. Sato, M., Imai, S., Fujita, N., Nishimura, S., Takao, Y., Sada, Y., Hubbard, B.E., Ilic, B., Sievers, A.J.: Experimental observation of the bifurcation dynamics of an intrinsic localized mode in a driven 1D nonlinear lattice. Phys. Rev. Lett. 107, 234101 (2011)

    ArticleĀ  Google ScholarĀ 

  96. Sato, M., Imai, S. Fujita, N., Shi, W., Takao, Y., Sada, Y., Hubbard, B.E., Ilic, B., Sievers, A.J.: Switching dynamics and linear response spectra of a driven one-dimensional nonlinear lattice containing an intrinsic localized mode. Phys. Rev. E 87, 012920 (2013)

    ArticleĀ  Google ScholarĀ 

  97. Senturia, S.D.: Microsystem Design. Kluwer Academic Publishers, Boston (2002)

    Google ScholarĀ 

  98. Shmilovich, T., Krylov, S.: Single layer tilting actuator with multiple close-gap electrodes. J. Micromech. Microeng. 19(8), 085001 (2009)

    ArticleĀ  Google ScholarĀ 

  99. Sorokin, S.V., Ershova, O.A.: Forced and free vibrations of rectangular sandwich plates with parametric stiffness modulation. J. Sound Vib. 259(1), 119ā€“143 (2003)

    ArticleĀ  Google ScholarĀ 

  100. Sorokin, S.V., Grishina, S.V.: Analysis of wave propagation in sandwich beams with parametric stiffness modulations. J. Sound Vib. 271, 1063ā€“1082 (2004)

    ArticleĀ  Google ScholarĀ 

  101. Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Phys. Rev. E 82, 026603, 14 pp (2010)

    Google ScholarĀ 

  102. Starosvetsky, Y., Hasan, M.A., Vakakis, A.F., Manevitch, L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. J. Appl. Math. 72, 337ā€“361 (2012)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  103. Strukov, B.A., Levanyuk, A.P.: Ferroelectric Phenomena in Crystals. Springer, Berlin/Heidelberg (1998)

    BookĀ  MATHĀ  Google ScholarĀ 

  104. Syafwan, M., Susanto, H., Cox, S.M.: Discrete solitons in electromechanical resonators. Phys. Rev. E 81, 026207 (2010)

    ArticleĀ  Google ScholarĀ 

  105. Syms, R.R.A.: Electrothermal frequency tuning of folded and coupled vibrating micromechanical resonators, IEEE J. Microelectromech. Syst. 7 (2), 164ā€“171 (1998)

    ArticleĀ  Google ScholarĀ 

  106. Tanaka, M.: An industrial and applied review of new MEMS devices features. Microelectron. Eng. 84(5ā€“8), 1341ā€“1344 (2007)

    ArticleĀ  Google ScholarĀ 

  107. Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.: Five parametric resonances in a micromechanical system. Nature 36, 149ā€“152 (1998)

    ArticleĀ  Google ScholarĀ 

  108. van der Avoort, C., van der Hout, R., Bontemps, J.J.M., Steeneken, P.G., Le Phan, K., Fey, R.H.B., Hulshof J., van Beek, J.T.M.: Amplitude saturation of MEMS resonators explained by autoparametric resonance. J. Micromech. Microeng. 20(10), 105012 (2010)

    ArticleĀ  Google ScholarĀ 

  109. Varadan, V.K., Varadan,V.V.: Microsensors, microelectromechanical systems (MEMS), and electronics for smart structures and systems. Smart Mater. Struct. 9, 953ā€“972 (2000)

    ArticleĀ  Google ScholarĀ 

  110. Waser, R.: Nanoelectronics and Information Technology. Wiley-VCH, Weinheim (2005)

    Google ScholarĀ 

  111. Yaā€™akobovitz, A., Krylov, S.: Toward sensitivity enhancement of MEMS accelerometers using mechanical amplification mechanism. IEEE Sensors J. 10(8), 1311ā€“1319 (2010)

    ArticleĀ  Google ScholarĀ 

  112. Yaā€™akobovitz, A., Krylov, S.: Large angle silicon-on-insulator tilting actuator with kinematic excitation and simple integrated parallel-plate electrostatic transducer, Jpn. J. Appl. Phys. 50, 117201 (2011)

    ArticleĀ  Google ScholarĀ 

  113. Yaā€™akobovitz, A., Krylov, S., Hanein, Y.: Nanoscale displacement measurement of electrostatically actuated micro-devices using optical microscopy and digital image correlation. Sensor Actuators A Phys. 162, 1ā€“7 (2010)

    ArticleĀ  Google ScholarĀ 

  114. Yarzdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640ā€“1659 (1998)

    ArticleĀ  Google ScholarĀ 

  115. Yie, Z., Miller, N.J., Shaw, S.W., Turner, K.L.: Parametric amplification in a resonant sensing array. J. Micromech. Microeng. 22, 035004 (2012)

    ArticleĀ  Google ScholarĀ 

  116. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, Springer, New York (2011)

    BookĀ  Google ScholarĀ 

  117. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam-based MEMS. IEEE J. Microelectromech. Syst. 12, 672ā€“680 (2003)

    ArticleĀ  Google ScholarĀ 

  118. Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors Actuators A 122, 23ā€“30 (2005)

    ArticleĀ  Google ScholarĀ 

  119. Zhang, W.H., Baskaran, R., Turner, K.: Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator. Appl. Phys. Lett. 82, 130ā€“132 (2003)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lurie, K.A. (2017). A General Concept of Dynamic Materials. In: An Introduction to the Mathematical Theory of Dynamic Materials. Advances in Mechanics and Mathematics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-65346-4_1

Download citation

Publish with us

Policies and ethics