A General Concept of Dynamic Materials

  • Konstantin A. Lurie
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 15)


Dynamic materials (DM) are defined as structures with parameters variable in space and time. Equivalent definition introduces DM as a union of material framework and the mass/momentum/energy fluxes between it and the environment. It is a thermodynamically open system supported by a non-stop exchange of said quantities.

Two conceptually different types of DM (activated and kinetic) are introduced in this chapter on the intuitive basis (this classification formalized in Chapter  3). DM have very dissimilar realizations, embracing such entirely different objects as the living tissue and traffic flow, along with sophisticated electromagnetic and/or mechanical devices produced by modern technology and briefly illustrated in the text.


Dynamic Material Proof Mass (PM) Material Kinetics Pattern Properties Electromagnetic Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abu-Salih, S., Elata, D.: Experimental validation of electromechanical buckling, IEEE J. Microelectromech. Syst. 15, 1656–1662 (2006)CrossRefGoogle Scholar
  2. 2.
    Acar, C., Shkel, A.M.: MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Andrianov, I.V., Danishevs’kyy, V.V., Kalamkarov, A.L.: Vibration localization in one-dimensional linear and nonlinear lattices: discrete and continuum models. Nonlinear Dyn. 72, 37–48 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bao, J.E., Zhou, J.: Nonlinear magnetic properties of Mn-modified B a 3 C o 2 F e 23 O 41 hexaferrite. IEEE Trans. Magn. 40(4), 1947–1951 (2004)CrossRefGoogle Scholar
  5. 5.
    Baruch, H.: Analytical Dynamics. WCB/McGraw Hill, New York (1999)Google Scholar
  6. 6.
    Batra, R.C., Porfiri, M., Spinello, D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16, R23–R31 (2007)CrossRefGoogle Scholar
  7. 7.
    Biswas, A., Kara, A.H., Bokhari, A.H., Zaman, F.D.: Solitons and conservation laws of Klein-Gordon equation with power law and log law nonlinearities. Nonlinear Dyn. 73, 2191–2196 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamics Effects, General Approach, Applications. World Scientific, Singapore (1999)Google Scholar
  9. 9.
    Blekhman, I.I., Lurie, K.A.: On dynamic materials. Proc. Rus. Acad. Sci. (Doklady) 37, 182–185 (2000)Google Scholar
  10. 10.
    Blekhman, I.I.: On vibrational dynamic materials and composites. Proc. Russ. Acad. Sci. (Doklady) 414, 618 (2007)Google Scholar
  11. 11.
    Braghin, F., Resta, F., Leo, E., Spinola, G.: Nonlinear dynamics of vibrating MEMS, Sensors Actuators A 134, 98–108 (2007)CrossRefGoogle Scholar
  12. 12.
    Bromberg, Y., Cross, M.C., Lifshitz, R.: Response of discrete nonlinear systems with many degrees of freedom. Phys. Rev. E 73, 016214 (2006)CrossRefGoogle Scholar
  13. 13.
    Buks, E. Roukes, M.L.: Electrically tunable collective response in a coupled micromechanical array. IEEE J. Microelectron. Syst. 11, 802–807 (2002)CrossRefGoogle Scholar
  14. 14.
    Castaner, L.M., Senturia S.D.: Speed-energy optimization of electrostatic actuators based on pull-in. J. Microelectromech. Syst. 8, 290–298 (1999)CrossRefGoogle Scholar
  15. 15.
    Chen, Q., Huang, L., Lai, Y.C.: Chaos-induced intrinsic localized modes in coupled microcantilever arrays. Appl. Phys. Lett. 92, 241914 (2008)CrossRefGoogle Scholar
  16. 16.
    Cherkaev, A.V.: Variational Methods for Structural Optimization, pp. xii + 627. Springer, New York (2000)Google Scholar
  17. 17.
    Choubey B., Boyd, E., Armstrong, I., Uttamchandani, D.: Determination of the anisotropy of Young’s modulus using a coupled microcantilever array. IEEE J. Microelectron. Syst. 21, 1252 (2012)CrossRefGoogle Scholar
  18. 18.
    DeMartini, B.E., Butterfield, H.E., Moehlis, J., Turner, K.L.: Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation, IEEE J. Microelectromech. Syst. 16, 1314–1323 (2007)CrossRefGoogle Scholar
  19. 19.
    DeMartini, B.E., Rhoads, J.F., Zielke, M.A., Owen, K.G., Shaw, S.W., Turner, K.L.: A single input-single output coupled microresonator array for the detection and identification of multiple analytes. Appl. Phys. Lett. 93, 054102 (2008)CrossRefGoogle Scholar
  20. 20.
    Dick, A.J., Balachandran, B., Mote Jr., C.D.: Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes. Nonlinear Dyn. 54, 13–29 (2008)zbMATHCrossRefGoogle Scholar
  21. 21.
    Dick, A.J., Balachandran, B., Mote Jr., C.D.: Localization in microresonator arrays: influence of natural frequency tuning. J. Comput. Nonlinear Dyn. 5, 011002-1–011002-11 (2010)Google Scholar
  22. 22.
    Eleftheriades, G., Balmain, K.: Negative-Index Metamaterials: Fundamental Principles and Applications, Wiley-IEEE, Hoboken (2005)CrossRefGoogle Scholar
  23. 23.
    Eleftheriades, G.V., Iyer, A.K., Kremer, P.C.: Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microwave Theory Tech. 50(12), 2702–2712 (2002)CrossRefGoogle Scholar
  24. 24.
    Fan, K., Padilla, W.F.: Dynamic electromagnetic metamaterials. Mater. Today 18(1), 39–50 (2015)CrossRefGoogle Scholar
  25. 25.
    Feng, C., Gore, K.: Dynamic characteristics of vibratory gyroscopes. IEEE Sensors J. 4(1), 80–84 (2004)CrossRefGoogle Scholar
  26. 26.
    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005)CrossRefGoogle Scholar
  27. 27.
    Gad-el-Hak, M.: MEMS Handbook. A CRC Press Company, Boca Raton (2002)zbMATHGoogle Scholar
  28. 28.
    Gendelman, O.V.: Exact solutions for discrete breathers in a forced-damped chain. Phys. Rev. E 87, 062911 (2013)CrossRefGoogle Scholar
  29. 29.
    Glean, A.A., Vignola, J.F., Judge, J.A., Ryan, T.J.: Mass sensing using the time-domain response of a MEMS structure with a functionalized subordinate oscillator array. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), Portland, OR, USA, August 4–7, 2013. pap. DETC2013-13394Google Scholar
  30. 30.
    Gupta, K.G., Senturia, S.D.: Pull-in dynamics as a measure of the ambient pressure. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Piscataway, NJ, pp. 290–294 (1997)Google Scholar
  31. 31.
    Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67, 1–36 (2012)zbMATHCrossRefGoogle Scholar
  32. 32.
    Harish, K.M., Gallacher, B.J., Burdess, J.S., Neasham, J.A.: Experimental investigation of parametric and externally forced motion in resonant MEMS sensors. J. Micromech. Microeng. 19, 015021 (2009)CrossRefGoogle Scholar
  33. 33.
    Hong, Y., Kim, S., Lee, J.H.: Modeling of angular-rate bandwidth for a vibrating microgyroscope. Microsyst. Technol. 9, 441–448 (2003)CrossRefGoogle Scholar
  34. 34.
    Hontsu, S., Nishikawa, N., Nakai, N., et al.: Preparation of all-oxide ferromagnetic/ferroelectric/superconducting heterostructures for advance microwave applications. Supercond. Sci. Tech. 12, 836–839 (1999)CrossRefGoogle Scholar
  35. 35.
    Hu, Z., Gallacher, B.J., Harish, K.M., Burdess, J.S.: An experimental study of high gain parametric amplification in MEMS. Sensors Actuators A 162, 145–154 (2010)CrossRefGoogle Scholar
  36. 36.
    Ilic, B., Craighead, H.G., Krylov, S., Senaratne, W., Ober C., Neuzil, P.: Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95(7), 3694–3703 (2004)CrossRefGoogle Scholar
  37. 37.
    Ilic, B., Yang, Y., Aubin, K., Reichenbach R., Krylov, S., Craighead, H.: Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 5(5), 925–929 (2005)CrossRefGoogle Scholar
  38. 38.
    Jayaprakash, K.R., Vakakis, A.F., Starosvetsky, Y.: Solitary waves in a general class of granular dimer chains. J. Appl. Phys. 112, 034908 (2012)CrossRefGoogle Scholar
  39. 39.
    Joe, D.J., Linzon, Y., Adiga,V.P., Barton, R.A., Kim, M., Ilic, B.R., Krylov, S.J., Parpia, M., Craighead, H.G.: Stress-based resonant volatile gas microsensor operated near the critically-buckled state. J. Appl. Phys. 111(10), 104517 (2012)CrossRefGoogle Scholar
  40. 40.
    Jona, F., Shirane, G.: Ferroelectric Crystals. Dover, New York (1993)Google Scholar
  41. 41.
    Judy, J.W.: Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10, 1115–1134 (2001)CrossRefGoogle Scholar
  42. 42.
    Kempe,V.: Inertial MEMS: Principles and Practice, Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  43. 43.
    Kenig, E., Lifshitz, R., Cross, M.C.: Pattern selection in parametrically driven arrays of nonlinear resonators. Phys. Rev. E 79, 026203 (2009)CrossRefGoogle Scholar
  44. 44.
    Kenig, E., Malomed, B.A., Cross, M.C., Lifshitz R.: Intrinsic localized modes in parametrically driven arrays of nonlinear resonators. Phys. Rev. E 80, 046202 (2009)CrossRefGoogle Scholar
  45. 45.
    Krylov, S.: Lyapunov exponents as a criterion for the dynamic pull-In instability of electrostatically actuated microstructures. Int. J. Nonlinear Mech. 42, 626–642 (2007)CrossRefGoogle Scholar
  46. 46.
    Krylov, S.: Parametric excitation and stabilization of electrostatically actuated microstructures. Int. J. Multiscale Comput. Eng. 6(6), 563–584 (2008)CrossRefGoogle Scholar
  47. 47.
    Krylov, S., Maimon, R.: Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. J. Vib. Acoust. 126, 332–342 (2004)CrossRefGoogle Scholar
  48. 48.
    Krylov,V., Sorokin, S.V.: Dynamics of elastic beams with controlled distributed stiffness parameters. Smart Mater. Struct. 6, 573–582 (1997)CrossRefGoogle Scholar
  49. 49.
    Krylov S., Harari, I., Cohen, Y.: Stabilisation of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15, 1188–1204 (2005)CrossRefGoogle Scholar
  50. 50.
    Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.: Pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)CrossRefGoogle Scholar
  51. 51.
    Krylov, S., Gerson, Y., Nachmias, T., Keren, U.: Excitation of large amplitude parametric resonance by the mechanical stiffness modulation of a microstructure. J. Micromech. Microeng. 20, 015041 (2010)CrossRefGoogle Scholar
  52. 52.
    Krylov, S., Molinazzy, N., Shmilovich, T., Pomerantz, U., Lulinsky, S.: Parametric excitation of flexural vibrations of micro beams by fringing electrostatic fields. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, Montreal, Quebec, Canada (2010)Google Scholar
  53. 53.
    Krylov, S., Ilic, B., Lulinsky, S.: Bistability of curved micro beams actuated by fringing electrostatic fields. Nonlinear Dyn. 66(3), 403–426 (2011)CrossRefGoogle Scholar
  54. 54.
    Krylov, S., Lurie, K., Ya’akobovitz, A.: Compliant structures with time-varying moment of inertia and non-zero averaged momentum and their application in angular rate microsensors. J. Sound Vib. 330, 4875–4895 (2011)CrossRefGoogle Scholar
  55. 55.
    Lang, W.: Reflections on the future microsystems. Sensors Actuators A 72 1–15 (1999)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Lange, D., Brand, O., Baltes, H.: Cantilever-Based CMOS Sensor Systems, Atomic Force Microscopy and Gas Sensing Applications, Springer, Berlin/Heidelberg (2002)CrossRefGoogle Scholar
  57. 57.
    Lenci, S., Rega, G.: Control of pull-In dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16, 390–401 (2006)CrossRefGoogle Scholar
  58. 58.
    Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003)CrossRefGoogle Scholar
  59. 59.
    Lifshitz, R., Cross, M.C.: Nonlinear dynamics of nanomechanical and micromechanical resonators. In: Shuster, H.G. (ed.) Review of Nonlinear Dynamics and Complexity. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)Google Scholar
  60. 60.
    Liu, K., Zhang, W., Chen, W., Li, K., Dai, F., Cui, F., Wu, X., Ma, G., Xiao, Q.: The development of micro-gyroscope technology. J. Micromech. Microeng. 19, 113001 (2009)CrossRefGoogle Scholar
  61. 61.
    Luo, A.C.J., Wang, F.Y.: Chaotic motion in a micro-electro-mechanical system with non-linearity from capacitors. Commun. Nonlinear Sci. Numer. Simul. 7, 31–49 (2002)zbMATHCrossRefGoogle Scholar
  62. 62.
    Lurie, K.A.: Applied Optimal Control of Distributed Systems, p. 499. Plenum Press, New York (1993)Google Scholar
  63. 63.
    Lurie, K.A.: Effective properties of smart elastic laminates and the screening phenomenon. Int.J. Solids Struct. 34, 1633–1643 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Lurie, K.A.: Bounds for the electromagnetic material properties of a spatio-temporal dielectric polycrystal with respect to one-dimensional wave propagation. Proc. R. Soc. Lond. A 454, 1547–1557 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Lurie, K.A.: An Introduction to the Mathematical Theory of Dynamic Materials. Springer, New York (2007)zbMATHGoogle Scholar
  66. 66.
    Lurie, K.A., Weekes, S.L.: Wave propagation and the energy exchange in a spatio-temporal material composite with rectangular microstructure, J. Math. Anal. Appl. 314, 286–310 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Lurie, K.A., Onofrei, D., Weekes, S.L.: Mathematical analysis of the wave propagation through a rectangular material structure in space-time, J. Math. Anal. Appl. 355, 180–194 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Mestrom, R.M.C., Fey, R.H.B., Phan, K.L., Nijmeijer, H.: Simulations and experiments of hardening and softening resonances in a clamped-clamped beam MEMS resonator. Sensors Actuators A Phys. 162(2)SI, 225–234 (2010)Google Scholar
  69. 69.
    Milton, G.W.: Theory of Composites, pp. xxvi + 717. Cambridge University Press, Cambridge (2002)Google Scholar
  70. 70.
    Morgenthaler, F.R.: Velocity modulation of electromagnetic waves. IRE Trans. Microwave Theory Tech. 6, 167–172 (1958)CrossRefGoogle Scholar
  71. 71.
    Napoli, M., Baskaran, R., Turner, K.L., Bamieh, B.: Understanding mechanical domain parametric resonance in microcantilevers. In: Proceedings of the IEEE 16th International Annual Conference on MEMS (MEMS’ 2003), pp. 169–172 (2003)Google Scholar
  72. 72.
    Nathanson, H.C., Wickstrom, R.A., Davis, J.R.: The resonant gate transistor. IEEE Trans. Electron Devices 14, 117–133 (1967)CrossRefGoogle Scholar
  73. 73.
    Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840–1847 (2005)CrossRefGoogle Scholar
  74. 74.
    Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)zbMATHCrossRefGoogle Scholar
  75. 75.
    Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41, 211–236 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Oropeza-Ramos, L.A., Burgner, C.B., Turner, K.L.: Robust micro-rate sensor actuated by parametric resonance. Sensors Actuators A 152, 80–87 (2009)CrossRefGoogle Scholar
  77. 77.
    Pelesko, J.A., Bernstein, D.H.: Modeling of MEMS and NEMS. Chapman & Hall/A CRC Press Company, Boca Raton/London/New York (2002)zbMATHCrossRefGoogle Scholar
  78. 78.
    Petersen, K.: A new age for MEMS. In: Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Transdusers’05, Seoul, Korea, pp. 1–4 (2005)Google Scholar
  79. 79.
    Porfiri, M.: Vibrations of parallel arrays of electrostatically actuated microplates. J. Sound Vib. 315, 1071–1085 (2008)CrossRefGoogle Scholar
  80. 80.
    Qi, S., Zhou, J., Yue, Z., Gui, Z., Li, L., Buddhudu, S.: A ferroelectric ferromagnetic composite material with significant permeability and permittivity. Adv. Funct. Mater. 14(9), 920–926 (2004)CrossRefGoogle Scholar
  81. 81.
    Rand, R.H.: Lecture Notes on Nonlinear Vibrations, version 52. (2005)
  82. 82.
    Randrianandrasana, M.F., Wei, X., Lowe, D.: A preliminary study into emergent behaviours in a lattice of interacting nonlinear resonators and oscillators. Commun. Nonlinear. Sci. Numer. Simul. 16, 2945–2956 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Rebeiz, G.M., Mems, R.F.: Theory Design and Technology. Wiley-Interscience, Hoboken, NJ (2003)Google Scholar
  84. 84.
    Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16, 890–899 (2006)CrossRefGoogle Scholar
  85. 85.
    Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. In: Proceedings of the DSCC2008 ASME Dynamic Systems and Control Conference, Ann Arbor, MI, USA, DSCC 2008-2406 (2008)Google Scholar
  86. 86.
    Ruar, D., Grütter, P.: Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699–702 (1991)CrossRefGoogle Scholar
  87. 87.
    Ryan, T.J., Judge, J.A., Vignola, J.F., Glean, A.A.: Noise sensitivity of a mass detection method using vibration modes of coupled microcantilever arrays. Appl. Phys. Lett. 101, 043104 (2012)CrossRefGoogle Scholar
  88. 88.
    Ryan, T.J., Judge, J.A., Nguyen, H., Glean, A.A., Vignola, J.F.: Experimental demonstration of mass detection using vibration modes of coupled cantilever arrays. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), Portland, OR, USA, August 4–7, 2013. pap. DETC2013-13468Google Scholar
  89. 89.
    Sabater, A.B.,SAB49 Rhoads, J.F.: Dynamics of globally-, dissipatively coupled resonators. In: Proceedings of the IDETC/CIE 2013, August 4–7, 2013, Portland, Oregon, USA. Pap. DETC2013-12949Google Scholar
  90. 90.
    Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley-Interscience, Hoboken (1991)CrossRefGoogle Scholar
  91. 91.
    Sato, M., Sievers, A.J.: Visualizing intrinsic localized modes with a nonlinear micromechanical array. Low Temp. Phys. 34, 543–548 (2008)CrossRefGoogle Scholar
  92. 92.
    Sato, M., Hubbard, B.E., English, L.Q., Sievers, A.J., Ilic, B. Czaplewski, D.A., Craighead, H.G.: Study of intrinsic localized vibrational modes in micromechanical oscillator arrays. Chaos 13, 702–715 (2003)CrossRefGoogle Scholar
  93. 93.
    Sato, M. Hubbard, B.E., Sievers, A.J.: Colloquium: nonlinear energy localization and its manipulation in micromechanical oscillator arrays, Rev. Mod. Phys. 78, 137–157 (2006)CrossRefGoogle Scholar
  94. 94.
    Sato, M., Fujita, N., Imai, S., Nishimura, S., Hori, Y., Sievers, A.J.: Manipulation of autoresonant intrinsic localized modes in MEMs arrays. AIP Conf. Proc. 1139, 118–127 (2011)CrossRefGoogle Scholar
  95. 95.
    Sato, M., Imai, S., Fujita, N., Nishimura, S., Takao, Y., Sada, Y., Hubbard, B.E., Ilic, B., Sievers, A.J.: Experimental observation of the bifurcation dynamics of an intrinsic localized mode in a driven 1D nonlinear lattice. Phys. Rev. Lett. 107, 234101 (2011)CrossRefGoogle Scholar
  96. 96.
    Sato, M., Imai, S. Fujita, N., Shi, W., Takao, Y., Sada, Y., Hubbard, B.E., Ilic, B., Sievers, A.J.: Switching dynamics and linear response spectra of a driven one-dimensional nonlinear lattice containing an intrinsic localized mode. Phys. Rev. E 87, 012920 (2013)CrossRefGoogle Scholar
  97. 97.
    Senturia, S.D.: Microsystem Design. Kluwer Academic Publishers, Boston (2002)Google Scholar
  98. 98.
    Shmilovich, T., Krylov, S.: Single layer tilting actuator with multiple close-gap electrodes. J. Micromech. Microeng. 19(8), 085001 (2009)CrossRefGoogle Scholar
  99. 99.
    Sorokin, S.V., Ershova, O.A.: Forced and free vibrations of rectangular sandwich plates with parametric stiffness modulation. J. Sound Vib. 259(1), 119–143 (2003)CrossRefGoogle Scholar
  100. 100.
    Sorokin, S.V., Grishina, S.V.: Analysis of wave propagation in sandwich beams with parametric stiffness modulations. J. Sound Vib. 271, 1063–1082 (2004)CrossRefGoogle Scholar
  101. 101.
    Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Phys. Rev. E 82, 026603, 14 pp (2010)Google Scholar
  102. 102.
    Starosvetsky, Y., Hasan, M.A., Vakakis, A.F., Manevitch, L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. J. Appl. Math. 72, 337–361 (2012)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Strukov, B.A., Levanyuk, A.P.: Ferroelectric Phenomena in Crystals. Springer, Berlin/Heidelberg (1998)zbMATHCrossRefGoogle Scholar
  104. 104.
    Syafwan, M., Susanto, H., Cox, S.M.: Discrete solitons in electromechanical resonators. Phys. Rev. E 81, 026207 (2010)CrossRefGoogle Scholar
  105. 105.
    Syms, R.R.A.: Electrothermal frequency tuning of folded and coupled vibrating micromechanical resonators, IEEE J. Microelectromech. Syst. 7 (2), 164–171 (1998)CrossRefGoogle Scholar
  106. 106.
    Tanaka, M.: An industrial and applied review of new MEMS devices features. Microelectron. Eng. 84(5–8), 1341–1344 (2007)CrossRefGoogle Scholar
  107. 107.
    Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.: Five parametric resonances in a micromechanical system. Nature 36, 149–152 (1998)CrossRefGoogle Scholar
  108. 108.
    van der Avoort, C., van der Hout, R., Bontemps, J.J.M., Steeneken, P.G., Le Phan, K., Fey, R.H.B., Hulshof J., van Beek, J.T.M.: Amplitude saturation of MEMS resonators explained by autoparametric resonance. J. Micromech. Microeng. 20(10), 105012 (2010)CrossRefGoogle Scholar
  109. 109.
    Varadan, V.K., Varadan,V.V.: Microsensors, microelectromechanical systems (MEMS), and electronics for smart structures and systems. Smart Mater. Struct. 9, 953–972 (2000)CrossRefGoogle Scholar
  110. 110.
    Waser, R.: Nanoelectronics and Information Technology. Wiley-VCH, Weinheim (2005)Google Scholar
  111. 111.
    Ya’akobovitz, A., Krylov, S.: Toward sensitivity enhancement of MEMS accelerometers using mechanical amplification mechanism. IEEE Sensors J. 10(8), 1311–1319 (2010)CrossRefGoogle Scholar
  112. 112.
    Ya’akobovitz, A., Krylov, S.: Large angle silicon-on-insulator tilting actuator with kinematic excitation and simple integrated parallel-plate electrostatic transducer, Jpn. J. Appl. Phys. 50, 117201 (2011)CrossRefGoogle Scholar
  113. 113.
    Ya’akobovitz, A., Krylov, S., Hanein, Y.: Nanoscale displacement measurement of electrostatically actuated micro-devices using optical microscopy and digital image correlation. Sensor Actuators A Phys. 162, 1–7 (2010)CrossRefGoogle Scholar
  114. 114.
    Yarzdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)CrossRefGoogle Scholar
  115. 115.
    Yie, Z., Miller, N.J., Shaw, S.W., Turner, K.L.: Parametric amplification in a resonant sensing array. J. Micromech. Microeng. 22, 035004 (2012)CrossRefGoogle Scholar
  116. 116.
    Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, Springer, New York (2011)CrossRefGoogle Scholar
  117. 117.
    Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam-based MEMS. IEEE J. Microelectromech. Syst. 12, 672–680 (2003)CrossRefGoogle Scholar
  118. 118.
    Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors Actuators A 122, 23–30 (2005)CrossRefGoogle Scholar
  119. 119.
    Zhang, W.H., Baskaran, R., Turner, K.: Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator. Appl. Phys. Lett. 82, 130–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Konstantin A. Lurie
    • 1
  1. 1.Department of Mathematical SciencesWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations