Skip to main content

Optimising Cyclic Timetables with a SAT Approach

EPIA 2017

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10423))

Abstract

This paper describes the preliminary results of an ongoing research on cyclic railway timetabling, namely on optimising timetables with respect to travel time using Boolean Satisfiability Problem (SAT) approaches.

Some works already done in the field of railway timetables propose solutions to the optimisation problem using Mixed Integer Linear Programming (MILP) and SAT. In this work, we propose a binary search procedure which uses a SAT solver to get global minimum solutions with respect to travel time, and a procedure which is being developed to compute a better upper bound for the solution value and speed up the search process.

Finally, we present some promising preliminary results which show that our approach applied to real world data performs better than existing SAT approaches and a state-of-the-art MILP approach.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    A robust timetable is a timetable that does not tend to become disrupted when subject to perturbations.

  2. 2.

    SISCOG - Sistemas Cognitivos, SA (http://www.siscog.eu).

  3. 3.

    Based on [15].

  4. 4.

    We formulated in MaxSAT our optimisation problem, which differs from the one in [3] for not taking into account the passenger routes but optimising the whole timetable instead.

References

  1. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  2. El Halaby, M.: On the computational complexity of MaxSAT. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 23, p. 34 (2016)

    Google Scholar 

  3. Gattermann, P., Nachtigall, K.: Integrating passengers’ routes in periodic timetabling: a SAT approach. In: 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), vol. 54, no. 3, pp. 1–15 (2016)

    Google Scholar 

  4. Gro, P., Opitz, J., Wei, R.: On resolving infeasible periodic event networks. In: Proceedings of the 13th Conference on Advanced Systems in Public Transport (CASPT 2015) (2015)

    Google Scholar 

  5. Großmann, P., Weiss, R., Opitz, J., Nachtigall, K.: Automated generation and optimization of public railway and rail freight transport time tables. MTM 5, 23–26 (2012)

    Google Scholar 

  6. Großmann, P.: Polynomial reduction from PESP to SAT. Technical report (2011)

    Google Scholar 

  7. Großmann, P.: Satisfiability and optimization in periodic traffic flow problems. Ph.D thesis, TU Dresden (2016)

    Google Scholar 

  8. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.: Solving public railway transport networks with SAT. Technical report, TU Dresden (2011)

    Google Scholar 

  9. Ingolotti, L., Lova, A., Barber, F., Tormos, P., Salido, M.A., Abril, M.: New heuristics to solve the “CSOP” railway timetabling problem. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS, vol. 4031, pp. 400–409. Springer, Heidelberg (2006). doi:10.1007/11779568_44

    Chapter  Google Scholar 

  10. Joshi, S., Martins, R., Manquinho, V.: Generalized totalizer encoding for pseudo-boolean constraints. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 200–209. Springer, Cham (2015). doi:10.1007/978-3-319-23219-5_15

    Chapter  Google Scholar 

  11. Kümmling, M., Großmann, P., Nachtigall, K., Opitz, J., Weiß, R.: A state-of-the-art realization of cyclic railway timetable computation. Public Transp. 7(3), 281–293 (2015)

    Article  Google Scholar 

  12. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7_39

    Chapter  Google Scholar 

  13. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_33

    Chapter  Google Scholar 

  14. Matos, G.P.: Optimisation of periodic train timetables. Master’s thesis project, Technical report, Instituto Superior Técnico, Lisbon, Portugal (2017)

    Google Scholar 

  15. Peeters, L.W.P.: Cyclic railway timetable optimization. Trail thesis series 22 (2003)

    Google Scholar 

  16. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Discrete Math. 2, 550–581 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo P. Matos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Matos, G.P., Albino, L., Saldanha, R.L., Morgado, E.M. (2017). Optimising Cyclic Timetables with a SAT Approach. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65340-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65339-6

  • Online ISBN: 978-3-319-65340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics