Skip to main content

Donor Selection and Cell Dose in Haploidentical SCT

  • Chapter
  • First Online:
Haploidentical Stem Cell Transplantation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The haploidentical stem cell transplantation field has expanded significantly over the last decade. This expansion is the result of using a cheap and easy way to control the bidirectional alloreactivity, a problem that once was a major hassle to the advance of this procedure. Currently haploidentical stem cell transplantation represents the default option for alternative donor selection for some of the largest transplant centers around the world. The ease of procurement, the availability of multiple motivated family donors makes it a very attractive option especially when urgent transplant is needed. Cost reduction is another reason to adopt haploidentical transplantation since there is virtually no cost to coordinate with the donor center and to store the product, and to transport product across countries. The presence of multiple potential haploidentical donors for the patient raises the question on how to select the best donor. Literature about the variables involved in the selection process is emerging as the use of haploidentical stem cell transplantation is expanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Liu DH, Liu KY, et al. Long–term follow–up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia. Cancer. 2013;119:978–85.

    Article  PubMed  Google Scholar 

  2. Wang Y, Chang Y-J, Xu L-P, et al. Who is the best donor for a related HLA-haplotype-mismatched transplant? Blood. 2014: blood-2014-2003-563130

    Google Scholar 

  3. Huang XJ, Zhao XY, Liu DH, Liu KY, Xu LP. Deleterious effects of KIR ligand incompatibility on clinical outcomes in haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion. Leukemia. 2007;21:848.

    CAS  PubMed  Google Scholar 

  4. Chang Y-J, Zhao X-Y, Xu L-P, et al. Donor-specific anti-human leukocyte antigen antibodies were associated with primary graft failure after unmanipulated haploidentical blood and marrow transplantation: a prospective study with randomly assigned training and validation sets. J Hematol Oncol. 2015;8:84.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Handgretinger R. Haploidentical transplantation: the search for the best donor. Blood. 2014;124:827–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peccatori J, Forcina A, Clerici D, et al. Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors. Leukemia. 2015;29:396–405.

    Article  CAS  PubMed  Google Scholar 

  7. Huang W, Li H, Gao C, et al. Unmanipulated HLA–mismatched/haploidentical peripheral blood stem cell transplantation for high–risk hematologic malignancies. Transfusion. 2012;52:1354–62.

    Article  CAS  PubMed  Google Scholar 

  8. McCurdy SR, Kanakry JA, Showel MM, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125:3024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ciceri F, Labopin M, Aversa F, et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112:3574–81.

    Article  CAS  PubMed  Google Scholar 

  10. Stern M, Ruggeri L, Mancusi A, et al. Survival after T cell–depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112:2990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moscard ÃF, Romero S, Sanz J, et al. T cell–depleted related HLA-mismatched peripheral blood stem cell transplantation as salvage therapy for graft failure after single unit unrelated donor umbilical cord blood transplantation. Biol Blood Marrow Transplant. 2014;20:1060–3.

    Article  Google Scholar 

  12. Wang Y, Fu HX, Liu DH, et al. Influence of two different doses of antithymocyte globulin in patients with standard-risk disease following haploidentical transplantation: a randomized trial. Bone Marrow Transplant. 2014;49:426–33.

    Article  CAS  PubMed  Google Scholar 

  13. Kasamon YL, Luznik L, Leffell MS, et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant. 2010;16:482–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fuchs EJ. Human leukocyte antigen-haploidentical stem cell transplantation using T-cell-replete bone marrow grafts. Curr Opin Hematol. 2012;19:440–7.

    Article  CAS  PubMed  Google Scholar 

  15. Anasetti C, Amos D, Beatty PG, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197–204.

    Article  CAS  PubMed  Google Scholar 

  16. Ottinger HD, Rebmann V, Pfeiffer KA, et al. Positive serum crossmatch as predictor for graft failure in HLA-mismatched allogeneic blood stem cell transplantation. Transplantation. 2002;73:1280–5.

    Article  PubMed  Google Scholar 

  17. Ciurea SO, De Lima M, Cano P, et al. High risk of graft failure in patients with anti-HLA antibodies undergoing haploidentical stem cell transplantation. Transplantation. 2009;88:1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gladstone DE, Zachary AA, Fuchs EJ, et al. Partially mismatched transplantation and human leukocyte antigen donor-specific antibodies. Biol Blood Marrow Transplant. 2013;19:647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoshihara S, Maruya E, Taniguchi K, et al. Risk and prevention of graft failure in patients with preexisting donor-specific HLA antibodies undergoing unmanipulated haploidentical SCT. Bone Marrow Transplant. 2008;47:508–15.

    Article  Google Scholar 

  20. Yoshihara S, Taniguchi K, Ogawa H, Saji H. The role of HLA antibodies in allogeneic SCT: is the ‘type-and-screen’™strategy necessary not only for blood type but also for HLA? Bone Marrow Transplant. 2012;47:1499–506.

    Article  CAS  PubMed  Google Scholar 

  21. Jordan SC, Vo AA. Donor-specific antibodies in allograft recipients: etiology, impact and therapeutic approaches. Curr Opin Organ Transplant. 2014;19:591–7.

    Article  CAS  PubMed  Google Scholar 

  22. Miller RA. The aging immune system: primer and prospectus. Science. 1996;273:70.

    Article  CAS  PubMed  Google Scholar 

  23. Lipschitz DA, Udupa KB, Indelicato SR, Das M. Effect of age on second messenger generation in neutrophils. Blood. 1991;78:1347–54.

    CAS  PubMed  Google Scholar 

  24. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee K-H, Lee J-H, Lee J-H, et al. Reduced-intensity conditioning therapy with busulfan, fludarabine, and antithymocyte globulin for HLA-haploidentical hematopoietic cell transplantation in acute leukemia and myelodysplastic syndrome. Blood. 2011;118:2609–17.

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Chang YJ, Xu LP, Huang XJ. The impact of donor characteristics on the immune cell composition of second allografts in Chinese people. Vox Sang. 2016;111:101–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kongtim P, Di Stasi A, Rondon G, et al. Can a female donor for a male recipient decrease the relapse rate for patients with acute myeloid leukemia treated with allogeneic hematopoietic stem cell transplantation? Biol Blood Marrow Transplant. 2015;21:713–9.

    Article  PubMed  Google Scholar 

  28. Stern M, Brand R, De Witte T, et al. Female–versus–male alloreactivity as a model for minor histocompatibility antigens in hematopoietic stem cell transplantation. Am J Transplant. 2008;8:2149–57.

    Article  CAS  PubMed  Google Scholar 

  29. Luo Y, Xiao H, Lai X, et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HSCT. Blood. 2014;124:2735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piemontese S, Ciceri F, Labopin M, et al. A survey on unmanipulated haploidentical hematopoietic stem cell transplantation in adults with acute leukemia. Leukemia. 2015;29:1069–75.

    Article  CAS  PubMed  Google Scholar 

  31. Guttridge MG, Sidders C, Booth-Davey E, Pamphilon D, Watt SM. Factors affecting volume reduction and red blood cell depletion of bone marrow on the COBE spectra cell separator before haematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;38:175–81.

    Article  CAS  PubMed  Google Scholar 

  32. Gajewski JL, Johnson VV, Sandler SG, Sayegh A, Klumpp TR. A review of transfusion practice before, during, and after hematopoietic progenitor cell transplantation. Blood. 2008;112:3036–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao XY, Chang YJ, Zhao XS, et al. Recipient expression of ligands for donor inhibitory KIRs enhances NK–cell function to control leukemic relapse after haploidentical transplantation. Eur J Immunol. 2015;45:2396–408.

    Article  CAS  PubMed  Google Scholar 

  35. Symons HJ, Leffell MS, Rossiter ND, Zahurak M, Jones RJ, Fuchs EJ. Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2010;16:533–42.

    Article  PubMed  Google Scholar 

  36. Michaelis SU, Mezger M, Bornh Ãuser M, et al. KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol. 2014;93:1579–86.

    Article  PubMed  Google Scholar 

  37. Oevermann L, Michaelis SU, Mezger M, et al. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood. 2014;124:2744–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lowe EJ, Turner V, Handgretinger R, et al. T–cell alloreactivity dominates natural killer cell alloreactivity in minimally T–cell–depleted HLA–non–identical paediatric bone marrow transplantation. Br J Haematol. 2003;123:323–6.

    Article  PubMed  Google Scholar 

  39. Ichinohe T, Uchiyama T, Shimazaki C, et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)–mismatched family members linked with long-term fetomaternal microchimerism. Blood. 2004;104:3821–8.

    Article  CAS  PubMed  Google Scholar 

  40. van Rood JJ, Loberiza FR, Zhang M-J, et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood. 2002;99:1572–7.

    Article  PubMed  Google Scholar 

  41. Yahng S-A, Kim J-H, Jeon Y-W, et al. A well-tolerated regimen of 800 cGy TBI-fludarabine-busulfan-ATG for reliable engraftment after unmanipulated haploidentical peripheral blood stem cell transplantation in adult patients with acute myeloid leukemia. Biol Blood Marrow Transplant. 2015;21:119–29.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang YY, Liu DH, Liu KY, et al. HLA-haploidentical hematopoietic SCT from collateral related donors without in vitro T-cell depletion for hematological malignancies. Bone Marrow Transplant. 2014;49:496–501.

    Article  PubMed  Google Scholar 

  43. Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.

    Article  PubMed  Google Scholar 

  44. Handgretinger R, Klingebiel T, Lang P, et al. Megadose transplantation of purified peripheral blood CD34+ progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant. 2001;27:777.

    Article  CAS  PubMed  Google Scholar 

  45. Reisner Y, Martelli MF. From ‘megadose’™haploidentical hematopoietic stem cell transplants in acute leukemia to tolerance induction in organ transplantation. Blood Cell Mol Dis. 2008;40:1–7.

    Article  Google Scholar 

  46. Kang Y, Chao NJ, Aversa F. Unmanipulated or CD34 selected haplotype mismatched transplants. Curr Opin Hematol. 2008;15:561–7.

    Article  CAS  PubMed  Google Scholar 

  47. Koh L-P, Rizzieri DA, Chao NJ. Allogeneic hematopoietic stem cell transplant using mismatched/haploidentical donors. Biol Blood Marrow Transplant. 2007;13:1249–67.

    Article  CAS  PubMed  Google Scholar 

  48. Chang Y-J, Xu L-P, Liu D-H, et al. Platelet engraftment in patients with hematologic malignancies following unmanipulated haploidentical blood and marrow transplantation: effects of CD34+ cell dose and disease status. Biol Blood Marrow Transplant. 2009;15:632–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutlu Arat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

El Fakih, R., Arat, M., Aljurf, M. (2017). Donor Selection and Cell Dose in Haploidentical SCT. In: Demirer, T. (eds) Haploidentical Stem Cell Transplantation. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-65319-8_2

Download citation

Publish with us

Policies and ethics