Skip to main content

Noise Sensitivity of Functionals of Fractional Brownian Motion Driven Stochastic Differential Equations: Results and Perspectives

  • Conference paper
  • First Online:
Modern Problems of Stochastic Analysis and Statistics (MPSAS 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 208))

Abstract

We present an innovating sensitivity analysis for stochastic differential equations: We study the sensitivity, when the Hurst parameter H of the driving fractional Brownian motion tends to the pure Brownian value, of probability distributions of smooth functionals of the trajectories of the solutions \(\{X^H_t\}_{t\in \mathbb {R}_+}\) and of the Laplace transform of the first passage time of \(X^H\) at a given threshold. Our technique requires to extend already known Gaussian estimates on the density of \(X^H_t\) to estimates with constants which are uniform w.r.t. t in the whole half-line \(\mathbb {R}_+-\{0\}\) and H when H tends to \(\tfrac{1}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aurzada, F.: On the one-sided exit problem for fractional Brownian motion. Electron. Commun. Probab. 16, 392–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baudoin, F., Ouyang, C., Tindel, S.: Upper bounds for the density of solutions to stochastic differential equations driven by fractional Brownian motions. Ann. Inst. Henri Poincaré Probab. Stat. 50(1), 111–135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardin, F., Bossy, M., Chauvin, C., Jabir, J.-F., Rousseau, A.: Stochastic Lagrangian method for downscaling problems in meteorology. M2AN Math. Model. Numer. Anal. 44(5), 885–920 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berzin, C., Latour, A., León, J.R.: Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  5. Besalú, M., Kohatsu-Higa, A., Tindel, S.: Gaussian type lower bounds for the density of solutions of SDEs driven by fractional Brownian motions. Ann. Probab. 44(1), 399–443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Comte, F., Coutin, L., Renault, É.: Affine fractional stochastic volatility models. Ann. Financ. 8, 337–378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Decreusefond, L., Nualart, D.: Hitting times for Gaussian processes. Ann. Probab. 36(1), 319–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delorme, M., Wiese, K.J.: Maximum of a fractional Brownian motion: analytic results from perturbation theory. Phys. Rev. Lett. 115, 210601 (2015)

    Article  MathSciNet  Google Scholar 

  9. Gobet, E.: Weak approximation of killed diffusion using Euler schemes. Stoch. Process. Appl. 87(2), 167–197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jeon, J.-H., Chechkin, A.V., Metzler, R.: First passage behaviour of multi-dimensional fractional Brownian motion and application to reaction phenomena. In: Metzler, R., Redner, S., Oshani, G. (eds.) First-Passage Phenomena and their Applications. World Scientific

    Google Scholar 

  11. Jolis, M., Viles, N.: Continuity in the hurst parameter of the law of the symmetric integral with respect to the fractional Brownian motion. Stoch. Process. Appl. 120(9), 1651–1679 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, New York (1988)

    Book  MATH  Google Scholar 

  13. Metzler, R., Redner, S., Oshani, G. (eds.): First-Passage Phenomena and their Applications. World Scientific

    Google Scholar 

  14. Molchan, G.M.: Maximum of a fractional Brownian motion: probabilities of small values. Commun. Math. Phys. 205(1), 97–111 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (2006)

    MATH  Google Scholar 

  16. Peccati, G., Thieullen, M., Tudor, C.: Martingale structure of Skorohod integral processes. Ann. Probab. 34(3), 1217–1239 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Richard, A., Talay, D.: Hölder continuity in the Hurst parameter of functionals of stochastic differential equations driven by fractional Brownian motion (2016). arXiv:1605.03475

  18. Rypdal, M., Rypdal, K.: Testing hypotheses about sun-climate complexity linking. Phys. Rev. Lett. 104(12), 128501 (2010)

    Article  Google Scholar 

  19. Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67(1), 251–282 (1936)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Talay .

Editor information

Editors and Affiliations

Appendix: Tables

Appendix: Tables

Table 1 Values of \(\Delta _H = \mathbb {E}\big [e^{-\lambda \tau _{\frac{1}{2}}}\big ] - \mathbb {E}\left[ e^{-\lambda \tau _H}\right] \) when \(H\rightarrow \tfrac{1}{2}\). Set of parameters: \(T=20,\ N=2^{16}\ (\delta \approx 3.10^{-4}),\ M=10^5\)
Table 2 Test case: Error estimation of our procedure in the Brownian case (\(H=\tfrac{1}{2}\)). Set of parameters: \(T=20,\ N=2^{16}\ (\delta _0\approx 3.10^{-4}),\ M=10^5\) for the simple estimator \(T=20,\ N=2^{15}\ (\delta _1\approx 6.10^{-4}),\ M=10^5\) for the bridge estimator
Table 3 Comparison of estimators in the fractional case (\(H=0,54\)). Set of parameters: \(T=20,\ N=2^{16}\ (\delta _0\approx 3.10^{-4}),\ M=10^5\) for the simple estimator \(T=20,\ N=2^{15}\ (\delta _1\approx 6.10^{-4}),\ M=10^5\) for the simple estimator \(T=20,\ N=2^{15}\ (\delta _1\approx 6.10^{-4}),\ M=10^5\) for the bridge estimator

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Richard, A., Talay, D. (2017). Noise Sensitivity of Functionals of Fractional Brownian Motion Driven Stochastic Differential Equations: Results and Perspectives. In: Panov, V. (eds) Modern Problems of Stochastic Analysis and Statistics. MPSAS 2016. Springer Proceedings in Mathematics & Statistics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65313-6_9

Download citation

Publish with us

Policies and ethics