Advertisement

Quadratic Approximation for Log-Likelihood Ratio Processes

  • Alexander GushchinEmail author
  • Esko Valkeila
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 208)

Abstract

We consider a sequence of general filtered statistical models with a finite-dimensional parameter. It is tacitly assumed that a proper rescaling of the parameter space is already done (so we deal with a local parameter) and also time rescaling is done if necessary. Our first and main purpose is to give sufficient conditions for the existence of certain uniform in time linear–quadratic approximations of log-likelihood ratio processes. Second, we prove general theorems establishing LAN, LAMN and LAQ properties for these models based on these linear–quadratic approximations. Our third purpose is to prove three theorems related to the necessity of the conditions in our main result. These theorems assert that these conditions are necessarily satisfied if (1) an approximation of a much more general form exists and a (necessary) condition of asymptotic negligibility of jumps of likelihood ratio processes holds, or (2) we have LAN property at every moment of time and the limiting models are continuous in time, or (3) we have LAN property, Hellinger processes are asymptotically degenerate at the terminal times, and the condition of asymptotic negligibility of jumps holds.

Keywords

Contiguity Filtered statistical experiment Hellinger process Likelihood ratio process Limit theorems Local asymptotic mixed normality Local asymptotic normality Local asymptotic quadraticity 

Notes

Acknowledgements

This research was supported by Suomalainen Tiedeakatemia (A.A. Gushchin), by Academy of Finland grants 210465 and 212875 (E. Valkeila), and by the program Tête-à-tête in Russia (Euler International Mathematical Institute; both authors). For the first author, this work has been funded by the Russian Academic Excellence Project ‘5-100’. The first author is deeply grateful to the referees for a number of comments aimed at improving the exposition.

References

  1. 1.
    Fabian, V., Hannan, J.: Local asymptotic behavior of densities. Stat. Decis. 5, 105–138 (1987)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Greenwood, P.E., Shiryayev, A.N.: Contiguity and the Statistical Invariance Principle. Gordon and Breach, New York (1985)zbMATHGoogle Scholar
  3. 3.
    Gushchin, A.A.: On taking limits under the compensator sign. In: Ibragimov, I.A., Zaitsev, A.Yu. (eds.) Probability Theory and Mathematical Statistics (St. Petersburg 1993), pp. 185–192. Gordon and Breach, Amsterdam (1996)Google Scholar
  4. 4.
    Gushchin, A.A., Küchler, U.: Asymptotic inference for a linear stochastic differential equation with time delay. Bernoulli 5, 1059–1098 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gushchin, A.A., Valkeila, E.: Exponential approximation of statistical experiments. In: Balakrishnan, N., et al. (eds.) Asymptotic Methods in Probability and Statistics with Applications (St. Petersburg 1998), pp. 409–423. Birkhäuser, Boston (2001)CrossRefGoogle Scholar
  6. 6.
    Gushchin, A.A., Valkeila, E.: Approximations and limit theorems for likelihood ratio processes in the binary case. Stat. Decis. 21, 219–260 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hallin, M., Van Den Akker, R., Werker, B.J.: On quadratic expansions of log-likelihoods and a general asymptotic linearity result. In: Hallin, M., et al. (eds.) Mathematical Statistics and Limit Theorems, pp. 147–165. Springer, Cham (2015)Google Scholar
  8. 8.
    Höpfner, R.: Asymptotic inference for continuous-time Markov chains. Probab. Theory Relat. Fields 77, 537–550 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Höpfner, R.: On statistics of Markov step processes: representation of log-likelihood ratio processes in filtered local models. Probab. Theory Relat. Fields 94, 375–398 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Höpfner, R.: Asymptotic Statistics. Walter de Gruyter, Berlin (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    Höpfner, R., Jacod, J.: Some remarks on the joint estimation of the index and the scale parameter for stable processes. In: Mandl, P., Hušková, M. (eds.) Asymptotic Statistics: Proceedings of the 5th Prague Symposium 1993, pp. 273–284. Physica Verlag, Heidelberg (1994)Google Scholar
  12. 12.
    Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1979)zbMATHGoogle Scholar
  13. 13.
    Jacod, J.: Filtered statistical models and Hellinger processes. Stoch. Process. Appl. 32, 3–45 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jacod, J.: Convergence of filtered statistical models and Hellinger processes. Stoch. Process. Appl. 32, 47–68 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jacod, J.: Une application de la topologie d’Emery: le processus information d’un modèle statistique filtré. Séminaire de Probabilités XXIII. Lecture Notes in Mathematics, vol. 1372, pp. 448–474. Springer, Berlin (1989)CrossRefGoogle Scholar
  16. 16.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Janssen, A.: Limits of translation invariant experiments. J. Multivar. Anal. 20, 129–142 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Janssen, A.: Asymptotically linear and mixed normal sequences of statistical experiments. Sankhya: Ser. A 53, 1–26 (1991)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Janssen, A.: Asymptotic relative efficiency of tests at the boundary of regular statistical models. J. Stat. Plan. Inference 126, 461–477 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kutoyants, Yu.: Identification of Dynamical Systems with Small Noise. Kluwer, Dordrecht (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Le Cam, L.: Locally asymptotically normal families of distributions. Univ. Calif. Publ. Stat. 3, 37–98 (1960)Google Scholar
  23. 23.
    Le Cam, L.: Likelihood functions for large numbers of independent observations. In: David, F.N. (ed.) Research Papers in Statistics (Festschrift J. Neyman), pp. 167–187. Wiley, London (1966)Google Scholar
  24. 24.
    Le Cam, L.: Sur l’approximation de familles de mesures par des familles gaussiennes. Annales de l’I.H.P. Probabilités et statistiques 21, 225–287 (1985)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Le Cam, L.: Asymptotic Methods in Statistical Decision Theory. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  26. 26.
    Le Cam, L., Yang, G.L.: On the preservation of local asymptotic normality under information loss. Ann. Stat. 16, 483–520 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Le Cam, L., Yang, G.L.: Asymptotics in Statistics: Some Basic Concepts, 2nd edn. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  28. 28.
    Lin’kov, Yu.N.: Asymptotic Statistical Methods for Stochastic Processes. Translations of Mathematical Monographs, vol. 196. American Mathematical Society, Providence (2001) Russian original: Kiev, Naukova Dumka (1993)Google Scholar
  29. 29.
    Liptser, R.Sh, Shiryayev, A.N.: Theory of Martingales. Kluwer, Dordrecht (1989)Google Scholar
  30. 30.
    Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes. I. General Theory, 2nd edn. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  31. 31.
    Luschgy, H.: Local asymptotic mixed normality for semimartingale experiments. Probab. Theory Relat. Fields 92, 151–176 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Luschgy, H.: Asymptotic inference for semimartingale models with singular parameter points. J. Stat. Plan. Inference 39, 155–186 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Luschgy, H.: Local asymptotic quadraticity of stochastic process models based on stopping times. Stoch. Process. Appl. 57, 305–317 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pfanzagl, J.: On distinguished LAN-representations. Math. Methods Stat. 11, 477–488 (2002)MathSciNetGoogle Scholar
  35. 35.
    Shiryaev, A.N., Spokoiny, V.G.: Statistical Experiments and Decisions: Asymptotic Theory. World Scientific, Singapore (2000)CrossRefzbMATHGoogle Scholar
  36. 36.
    Strasser, H.: Scale invariance of statistical experiments. Probab. Math. Stat. 5, 1–20 (1985)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Strasser, H.: Stability of filtered experiments. In: Sendler, W. (ed.) Contributions to Stochastics, pp. 202–213. Physica Verlag, Heidelberg (1987)CrossRefGoogle Scholar
  38. 38.
    Vostrikova, L.: Functional limit theorems for the likelihood ratio processes. Ann. Univ. Sci. Budapest. Sect. Comput. 6, 145–182 (1985)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Vostrikova, L.: On the weak convergence of likelihood ratio processes of general statistical parametric models. Stochastics 23, 277–298 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia
  2. 2.Laboratory of Stochastic Analysis and its ApplicationsNational Research University Higher School of EconomicsMoscowRussia
  3. 3.Aalto UniversityAaltoFinland

Personalised recommendations