Skip to main content

Harnack Inequalities and Bounds for Densities of Stochastic Processes

  • Conference paper
  • First Online:
Modern Problems of Stochastic Analysis and Statistics (MPSAS 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 208))

  • 982 Accesses

Abstract

We consider possibly degenerate parabolic operators in the form

$$ \mathscr {L}= \sum _{k=1}^{m}X_{k}^{2}+X_{0}-\partial _{t}, $$

that are naturally associated to a suitable family of stochastic differential equations, and satisfying the Hörmander condition. Note that, under this assumption, the operators in the form \(\mathscr {L}\) have a smooth fundamental solution that agrees with the density of the corresponding stochastic process. We describe a method based on Harnack inequalities and on the construction of Harnack chains to prove lower bounds for the fundamental solution. We also briefly discuss PDE and SDE methods to prove analogous upper bounds. We eventually give a list of meaningful examples of operators to which the method applies.

Dedicated to Valentin Konakov in occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bally, V.: Lower bounds for the density of locally elliptic Itô processes. Ann. Probab. 34, 2406–2440 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bally, V., Kohatsu-Higa, A.: Lower bounds for densities of Asian type stochastic differential equations. J. Funct. Anal. 258, 3134–3164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bass, R.: Diffusions and elliptic operators. Springer, New York (1998)

    MATH  Google Scholar 

  6. Ben, G.: Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale. Probab. Theory Related Fields 90, 175–202 (1991)

    Article  MathSciNet  Google Scholar 

  7. Borodin, A.N., Salminien, P.: Handbook of Brownian motionfacts and formulae, Probability and its Applications, 2nd edn. Birkhauser, Basel (2002)

    Book  Google Scholar 

  8. Boscain, U., Polidoro, S.: Gaussian estimates for hypoelliptic operators via optimal control. Rend. Lincei Math. Appl. 18, 333–342 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Cibelli, G., Polidoro, S., Rossi, F.: Sharp estimates for Geman-Yor Processes and Application to Arithmetic Average Asian Option, Submitted

    Google Scholar 

  10. Cinti, C., Menozzi, S., Polidoro, S.: Two-sides bounds for degenerate processes with densities supported in subsets of \({\mathbb{R}}^n\), Potential Analysis, pp. 1577–1630 (2014)

    Google Scholar 

  11. Cinti, C., Nyström, K., Polidoro, S.: A note on Harnack inequalities and propagation sets for a class of hypoelliptic operators. Potential Anal. 33, 341–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cinti, C., Polidoro, S.: Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators. J. Math. Anal. Appl. 338, 946–969 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davies, E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109, 319–333 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delarue, F., Menozzi, S.: Density estimates for a random noise propagating through a chain of differential equations. J. Funct. Anal. 259, 1577–1630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Francesco, M., Polidoro, S.: Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv. Differ. Equ. 11, 1261–1320 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Escauriaza, L.: Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form. Comm. Partial Differ. Equ. 25, 821–845 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fabes, E.B., Stroock, D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96, 327–338 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hadamard, J.: Extension à l’ équation de la chaleur d’un théorème de A. Harnack. Rend. Circ. Mat. Palermo 2(3), 337–346 (1954)

    Article  MATH  Google Scholar 

  19. Il’in, A.M.: On a class of ultraparabolic equations. Dokl. Akad. Nauk SSSR 159, 1214–1217 (1964)

    MathSciNet  Google Scholar 

  20. Jerison, D.S., Sánchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35, 835–854 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kogoj, A., Polidoro, S.: Harnack Inequality for Hypoelliptic Second Order Partial Differential Operators (to appear on Potential Analysis) (2016)

    Google Scholar 

  23. Kohatsu, A.: Higa, Lower bounds for densities of uniformly elliptic random variables on Wiener space. Probab. Theory Related Fields 126, 421–457 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Konakov, V.: Parametrix method for diffusion and Markov chains, Russian preprint available on https://www.hse.ru/en/org/persons/22565341

  25. Kolmogoroff, A.: Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. of Math. 35(2), 116–117 (1934)

    Google Scholar 

  26. Krylov, N.V., Safonov, M.V.: A certain property of solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44, 161–175 (1980)

    MathSciNet  Google Scholar 

  27. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, 391–442 (1987)

    MathSciNet  MATH  Google Scholar 

  28. Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators. In: Proceedings of the International Symposium on Stochastic Differential Equations, pp. 195–263. Wiley, New York-Chichester-Brisbane (1978)

    Google Scholar 

  29. McKeane Jr., H.P., Singer, I.M.: Curvature and the eigenvalues of t-he Laplacian. J. Differ. Geom. 1, 43–69 (1967)

    Article  Google Scholar 

  30. Metafune, G., Pallara, D., Rhandi, A.: Global properties of invariant measures. J. Funct. Anal. 223, 396–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Monti, L., Pascucci, A.: Obstacle problem for arithmetic Asian options. C.R. Math. Acad. Sci. Paris 347, 1443–1446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moser, J.: A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17, 101–134 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moser, J.: correction to: a Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 20, 231–236 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and its Applications. Springer, New York (2000)

    Google Scholar 

  36. Pini, B.: Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico. Rend. Sem. Mat. Univ. Padova 23, 422–434 (1954)

    MathSciNet  MATH  Google Scholar 

  37. Polidoro, S.: On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type. Matematiche (Catania) 49, 53–105 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Polidoro, S.: A global lower bound for the fundamental solution of Kolmogorov–Fokker–Planck equations. Arch. Ration. Mech. Anal. 137, 321–340 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pontryagin, L.S., Mishchenko, E., Boltyanskii, V., Gamkrelidze, R.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    Google Scholar 

  40. Rothschild, L., Stein, E.M.: E, Hypoelliptic differential operators and nilpotent groups. Acta Math 137, 247–320 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  41. Smirnov, N.: Sur la distribution de 2 (criterium de M. von Mises). C. R. Acad. Sci. Paris 202, 449–452 (1936)

    Google Scholar 

  42. Sonin, I.M.: A class o degerate diffusion processes. Teor. Verojatnost. i Primenen 12, 540–547 (1967)

    MathSciNet  MATH  Google Scholar 

  43. Tolmatz, L.: Asymptotics of the distribution of the integral of the absolute value of the Brownian bridge for large arguments. Ann. Probab. 28, 132–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Varopoulos, N.T., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  45. Weber, M.: The fundamental solution of a degenerate partial differential equation of parabolic type. Trans. Am. Math. Soc. 71, 24–37 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yor, M.: On some exponential functionals of Brownian motion. Adv. Appl. Probab. 24, 509–531 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for his/her careful reading of our manuscript and for several suggestions that have improved the exposition of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Polidoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cibelli, G., Polidoro, S. (2017). Harnack Inequalities and Bounds for Densities of Stochastic Processes. In: Panov, V. (eds) Modern Problems of Stochastic Analysis and Statistics. MPSAS 2016. Springer Proceedings in Mathematics & Statistics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65313-6_4

Download citation

Publish with us

Policies and ethics