Advertisement

New Research Directions in Modern Actuarial Sciences

  • Ekaterina BulinskayaEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 208)

Abstract

The aim of the paper is to outline the new trends in modern actuarial sciences in order to help the researchers to find new domains of activity and university professors teaching future actuaries to prepare special courses. The paper begins by description of actuarial profession and a brief historical sketch. After recalling the main achievements of the first two periods in actuarial sciences, we describe the new research directions of the third and fourth periods characterized by interplay of insurance and finance, unification of reliability and cost approaches, as well as, consideration of complex systems. Sophisticated mathematical tools are used for analysis and optimization of insurance systems including dividend payment, reinsurance, and investment. Discrete-time models turned out to be more realistic in some situations for investigation of insurance problems.

Keywords

Risk Dividends Reinsurance Investment Ruin Bankruptcy 

Notes

Acknowledgements

The research was partially supported by RFBR grant No. 17-01-00468. The author would like to thank two anonymous referees for their helpful suggestions aimed at the paper improvement.

References

  1. 1.
    Abdallah, A., Boucher, J.P., Cossette, H.: Modeling dependence between loss triangles with hierarchical Archimedean copulas. ASTIN Bull. 45, 577–599 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ahn, S., Badescu, A.L.: On the analysis of the Gerber-Shiu discounted penalty function for risk processes with Markovian arrivals. Insur.: Math. Econ. 41(2), 234–249 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ahn, S., Ramaswami, V.: Efficient algorithms for transient analysis of stochastic fluid flow models. J. Appl. Probab. 42, 531–549 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ahn, S., Badescu, A.L., Ramaswami, V.: Time dependent analysis of finite buffer fluid flows and risk models with a dividend barrier. Queueing Syst. 55, 207–222 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Albrecher, H., Boxma, O.J.: On the discounted penalty function in a Markov-dependent risk model. Insur.: Math. Econ. 37, 650–672 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Albrecher, H., Hartinger, J.: A risk model with multi-layer dividend strategy. N. Am. Actuar. J. 11, 43–64 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Albrecher, H., Hipp, C.: Lundberg’s risk process with tax. Bl. DGVFM 28(1), 13–28 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Albrecher, H., Thonhauser, S.: Optimal dividend strategies for a risk process under force of interest. Insur.: Math. Econ. 43, 134–149 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Albrecher, H., Thonhauser, S.: Optimality results for dividend problems in insurance. Rev. R. Acad. Cien. Serie A Mat. 103(2), 295–320 (2009)Google Scholar
  10. 10.
    Albrecher, H., Hartinger, J., Tichy, R.: On the distribution of dividend payments and the discounted penalty function in a risk model with linear dividend barrier. Scand. Actuar. J. 2005(2), 103–126 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Albrecher, H., Hartinger, J., Thonhauser, S.: On exact solutions for dividend strategies of threshold and linear barrier type in a Sparre Andersen model. ASTIN Bull. 37(2), 203–233 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Albrecher, H., Badescu, A.L., Landriault, D.: On the dual risk model with taxation. Insur.: Math. Econ. 42(3), 1086–1094 (2008)zbMATHGoogle Scholar
  13. 13.
    Albrecher, H., Constantinescu, C., Loisel, S.: Explicit ruin formulas for models with dependence among risks. Insur.: Math. Econ. 48(2), 265–270 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Albrecher, H., Gerber, H.U., Shiu, E.S.W.: The optimal dividend barrier in the Gamma-Omega model. Eur. Actuar. J. 1, 43–55 (2011)Google Scholar
  15. 15.
    Albrecher, H., Bäuerle, N., Thonhauser, S.: Optimal dividend pay-out in random discrete time. Stat. Risk Model. 28, 251–276 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Albrecher, H., Cheung, E.C.K., Thonhauser, S.: Randomized observation periods for the compound Poisson risk model: dividends. ASTIN Bull. 41(2), 645–672 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Albrecher, H., Cheung, E.C.K., Thonhauser, S.: Randomized observation periods for the compound Poisson risk model: the discounted penalty function. Scand. Actuar. J. 2013(6), 224–252 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Alfa, A.S., Drekic, S.: Algorithmic analysis of the Sparre Andersen model in discrete time. ASTIN Bull. 37, 293–317 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Andersen, S.: On the collective theory of risk in case of contagion between claims. Bull. Inst. Math. Appl. 12, 275–279 (1957)Google Scholar
  20. 20.
    Andrusiv, A., Zinchenko, N.: Estimates for ruin probabilities and invariance principle for Cramér-Lundberg model with stochastic premiums. Prykladna Statist. Actuarna ta Financ. Matematyka. 2, 5–17 (2004)Google Scholar
  21. 21.
    Applebaum, D.: Lévy Process and Stochastic Calculus. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9, 203–228 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Asmussen, S.: Risk theory in a Markovian environment. Scand. Actuar. J. 1989(2), 69–100 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Asmussen, S.: Ruin Probabilities. World Scientific, Singapore (2000)zbMATHCrossRefGoogle Scholar
  25. 25.
    Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. World Scientific, New Jersey (2010)zbMATHCrossRefGoogle Scholar
  26. 26.
    Asmussen, S., Kluppelberg, C.: Large deviation results for subexponential tails, with applications to insurance risk. Stoch. Process. Appl. 64, 105–125 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Assaf, D., Langberg, N.A., Savits, T.H., Shaked, M.: Multivariate phase-type distributions. Oper. Res. 32, 688–702 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Avanzi, B.: Strategies for dividend distribution: a review. N. Am. Actuar. J. 13(2), 217–251 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Avanzi, B., Cheung, E.C.K., Wong, B., Woo, J.-K.: On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency. Insur.: Math. Econ. 52(1), 98–113 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Avanzi, B., Taylor, G., Vu, P.A., Wong, B.: Stochastic loss reserving with dependence: a flexible multivariate Tweedie approach (30 March 2016). UNSW Business School Research Paper No. 2016ACTL01. Available at SSRN. https://dx.doi.org/10.2139/ssrn.2753540
  31. 31.
    Avram, F., Palmowski, Z., Pistorius, M.R.: On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 17, 156–180 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Avram, F., Palmowski, Z., Pistorius, M.R.: On Gerber-Shiu functions and optimal dividend distribution for a Lévy risk process in the presence of a penalty function. Ann. Appl. Probab. 25(4), 1868–1935 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Avram, F., Badescu, A.L., Pistorius, M.R., Rabehasaina, L.: On a class of dependent Sparre Andersen risk models and a bailout application. Insur.: Math. Econ. 71, 27–39 (2016)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Azcue, P., Muler, N.: Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model. Math. Financ. 15, 261–308 (2005)zbMATHCrossRefGoogle Scholar
  35. 35.
    Azcue, P., Muler, N.: Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints. Insur.: Math. Econ. 44(1), 26–34 (2009)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Azcue, P., Muler, N.: Optimal investment policy and dividend payment strategy in an insurance company. Ann. Appl. Probab. 20, 1253–1302 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Azcue, P., Muler, N.: Stochastic Optimization in Insurance. A Dynamic Programming Approach. Springer, Berlin (2014)zbMATHGoogle Scholar
  38. 38.
    Badescu, A.L., Landriault, D.: Moments of the discounted dividends in a threshold-type Markovian risk process. Braz. J. Probab. Stat. 21, 13–25 (2007)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Badescu, A.L., Landriault, D.: Recursive calculation of the dividend moments in a multi-threshold risk model. N. Am. Actuar. J. 12(1), 74–88 (2008)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Badescu, A.L., Landriault, D.: Applications of fluid flow matrix analytic methods in ruin theory - a review. Rev. R. Acad. Cien. Serie A Mat. 103(2), 353–372 (2009)Google Scholar
  41. 41.
    Badescu, A.L., Stanford, D.A.: A generalization of the De Vylder approximation for the probability of ruin. Econ. Comput. Econ. Cybern. Stud. Res. 40(3–4), 245–265 (2006)Google Scholar
  42. 42.
    Badescu, A., Breuer, L., da Silva Soares, A., Latouche, G., Remiche, M.-A., Stanford, D.: Risk processes analyzed as fluid queues. Scand. Actuar. J. 2005(2), 127–141 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Badescu, A., Breuer, L., Drekic, S., Latouche, G., Stanford, D.: The surplus prior to ruin and the deficit at ruin for a correlated risk process. Scand. Actuar. J. 2005, 433–445 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Badescu, A.L., Drekic, S., Landriault, D.: Analysis of a threshold dividend strategy for a MAP risk model. Scand. Actuar. J. 2007(4), 227–247 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Badescu, A.L., Drekic, S., Landriault, D.: On the analysis of a multi-threshold Markovian risk model. Scand. Actuar. J. 2007(4), 248–260 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Badescu, A.L., Cheung, E.C.K., Landriault, D.: Dependent risk models with bivariate phase-type distributions. J. Appl. Probab. 46(1), 113–131 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Badescu, A.L., Cheung, E., Rabehasaina, L.: A two dimensional risk model with proportional reinsurance. J. Appl. Probab. 48(3), 749–765 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Balbás, A., Balbás, B., Balbás, R.: Optimal reinsurance: a risk sharing approach. Risks 1, 45–56 (2013)zbMATHCrossRefGoogle Scholar
  49. 49.
    Balbás, A., Balbás, B., Balbás, R., Heras, A.: Optimal reinsurance under risk and uncertainty. Insur.: Math. Econ. 60(1), 61–74 (2015)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Bao, Zh., Liu, He.: On the discounted factorial moments of the deficit in discrete time renewal risk model. Int. J. Pure Appl. Math. 79(2), 329–341 (2012)Google Scholar
  51. 51.
    Barton, T.L., Shenkir, W.G., Walker, P.L.: Making Enterprise Risk Management Pay Off: How Leading Companies Implement Risk Management. Prentice Hall, Upper Saddle River (2002)Google Scholar
  52. 52.
    Bäuerle, N., Rieder, U.: Markov Decision Processes with Applications to Finance. Springer, Berlin (2011)Google Scholar
  53. 53.
    Bäuerle, N.: Benchmark and mean-variance problems for insurers. Math. Methods Oper. Res. 62(1), 159–165 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Bayraktar, E., Kyprianou, A.E., Yamazaki, K.: On optimal dividends in the dual model. ASTIN Bull. 43(3), 359–372 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Bayraktar, E., Kyprianou, A.E., Yamazaki, K.: Optimal dividends in the dual model under transaction costs. Insur.: Math. Econ. 54(1), 133–143 (2014)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Beard, R.E., Pentikäinen, T., Pesonen, E.: Risk Theory. The Stochastic Basis of Insurance, 3rd edn. Chapman and Hall, London (1984)zbMATHGoogle Scholar
  57. 57.
    Belkina, T., Hipp, C., Luo, Sh., Taksar, M.: Optimal constrained investment in the Cramer-Lundberg model. Scand. Actuar. J. 2014(5), 383–404 (2014)Google Scholar
  58. 58.
    Belkina, T., Kabanov, Yu.: Viscosity solutions of integro-differential equations for non-ruin probabilities. Theory Probab. Appl. 60(4), 671–679 (2016)Google Scholar
  59. 59.
    Belkina, T., Konyukhova, N., Kurochkin, S.: Singular problems for integro-differential equations in dynamic insurance models. Springer Proceedings in Mathematics, Proceedings of the International Conference on Differential and Difference Equations and Applications (in honour of Prof. Ravi P. Agarval) (Azores University, Ponta Delgada, Portugal, 4–8 July 2011), vol. 47, pp. 27–44. Springer, Berlin (2013)Google Scholar
  60. 60.
    Belkina, T.: Risky investment for insurers and sufficiency theorems for the survival probability. Markov Process. Relat. Fields 20(3), 505–525 (2014)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Belkina, T.A., Konyukhova, N.B., Kurochkin, S.V.: Dynamic insurance models with investment: constrained singular problems for integro-differential equations. Comput. Math. Math. Phys. 56(1), 43–92 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Belkina, T.A., Konyukhova, N.B., Kurochkin, S.V.: Singular initial-value and boundary-value problems for integro-differential equations in dynamical insurance models with investments. J. Math. Sci. 218(4), 369–394 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Bening, V.E., Korolev, V.Yu., Liu, L.X.: Asymptotic behavior of generalized risk processes. Acta Math. Sin. Engl. Ser. 20(2), 349–356 (2004)Google Scholar
  64. 64.
    Bernstein, P.L.: Against the Gods: The Remarkable Story of Risk. Wiley, New York (1996)Google Scholar
  65. 65.
    Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)Google Scholar
  66. 66.
    Bi, X., Zhang, S.: Minimizing the risk of absolute ruin under a diffusion approximation model with reinsurance and investment. J. Syst. Sci. Complex. 28(1), 144–155 (2015)zbMATHCrossRefGoogle Scholar
  67. 67.
    Biffis, E., Kyprianou, A.E.: A note on scale functions and the time value of ruin for Lévy insurance risk processes. Insur.: Math. Econ. 46(1), 85–91 (2010)zbMATHGoogle Scholar
  68. 68.
    Biffis, E., Morales, M.: On a generalization of the Gerber-Shiu function to path-dependent penalties. Insur.: Math. Econ. 46, 92–97 (2010)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)zbMATHCrossRefGoogle Scholar
  70. 70.
    Blaževičius, K., Bieliauskienė, E., Šiaulys, J.: Finite-time ruin probability in the nonhomogeneous claim case. Lith. Math. J. 50(3), 260–270 (2010)Google Scholar
  71. 71.
    Boland, P.J.: Statistical and Probabilistic Methods in Actuarial Science. Chapman and Hall, Boca Raton (2007)Google Scholar
  72. 72.
    Boonen, T.J., Tan, K.S., Zhuang, S.C.: The role of a representative reinsurer in optimal reinsurance. Insur.: Math. Econ. 70, 196–204 (2016)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Booth, Ph., Chadburn, R., Haberman, S., James, D., Khorasanee, Z., Plumb, R.H., Rickayzen, B.: Modern Actuarial Theory and Practice, 2nd edn. Chapman and Hall/CRC, Boca Raton (2004)Google Scholar
  74. 74.
    Boudreault, M., Cossette, H., Landriault, D., Marceau, E.: On a risk model with dependence between interclaim arrivals and claim sizes. Scand. Actuar. J. 2005, 265–285 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., Nesbitt, S.J.: Actuarial Mathematics, 2nd edn. Society of Actuaries, Schaumburg (1997)Google Scholar
  76. 76.
    Boykov, A.V.: Cramer-Lundberg model with stochastic premiums. Theory Probab. Appl. 47(3), 549–553 (2002)MathSciNetGoogle Scholar
  77. 77.
    Brandtner, M., Kursten, W.: Solvency II, regulatory capital, and optimal reinsurance: how good are conditional value-at-risk and spectral risk measures? Insur.: Math. Econ. 59, 156–167 (2014)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Breuer, L.: A quintuple law for Markov-additive processes with phase-type jumps. J. Appl. Probab. 47(2), 441–458 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Breuer, L., Badescu, A.: A generalised Gerber-Shiu measure for Markov-additive risk processes with phase-type claims and capital injections. Scand. Actuar. J. 2014(2), 93–115 (2014)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Browne, S.: Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20(4), 937–958 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Bühlmann, H.: Mathematical Methods in Risk Theory. Grundlehrenband, vol. 172. Springer, Heidelberg (1970)zbMATHGoogle Scholar
  82. 82.
    Bühlmann, H.: Actuaries of the third kind. ASTIN Bull. 17(2), 137–138 (1987)CrossRefGoogle Scholar
  83. 83.
    Bühlmann, H., Gisler, A.: A Course in Credibility Theory and Its Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  84. 84.
    Bühlmann, H., Moriconi, F.: Credibility claims reserving with stochastic diagonal effects. ASTIN Bull. 45, 309–353 (2015)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Bulinskaya, E.V., Chepurin, E.V.: Actuarial education at the Moscow State University. Transactions of the 26th International Congress of Actuaries, 7–12 June 1998, Birmingham, vol. 1, pp. 41–52 (1998)Google Scholar
  86. 86.
    Bulinskaya, E., Gromov, A.: New approach to dynamic XL reinsurance. In: Proceedings of SMTDA 2010, Chania, Greece, June 8–11, pp. 147–154 (2010)Google Scholar
  87. 87.
    Bulinskaya, E., Muromskaya, A.: Optimization of multi-component insurance system with dividend payments. In: Manca, R., McClean, S., Skiadas, Ch.H. (eds.) New Trends in Stochastic Modeling and Data Analysis. ISAST, Athens (2015)Google Scholar
  88. 88.
    Bulinskaya, E., Sokolova, A.: Asymptotic behaviour of stochastic storage systems. Mod. Probl. Math. Mech. 10(3), 37–62 (2015) (in Russian)Google Scholar
  89. 89.
    Bulinskaya, E., Yartseva, D.: Discrete time models with dividends and reinsurance. In: Proceedings of SMTDA 2010, Chania, Greece, June 8–11, pp. 155–162 (2010)Google Scholar
  90. 90.
    Bulinskaya, E.: On the cost approach in insurance. Rev. Appl. Ind. Math. 10(2), 276–286 (2003) (in Russian)Google Scholar
  91. 91.
    Bulinskaya, E.V.: Some aspects of decision making under uncertainty. J. Stat. Plan. Inference. 137(8), 2613–2632 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Bulinskaya, E.V.: Sensitivity analysis of some applied models. Pliska Stud. Math. Bulg. 18, 57–90 (2007)MathSciNetGoogle Scholar
  93. 93.
    Bulinskaya, E.: Asymptotic analysis of insurance models with bank loans. In: Bozeman, J.R., Girardin, V., Skiadas, C.H. (eds.) New Perspectives on Stochastic Modeling and Data Analysis, pp. 255–270. ISAST, Athens (2014)Google Scholar
  94. 94.
    Bulinskaya, E., Gromov, A.: Asymptotic behavior of the processes describing some insurance models. Commun. Stat. Theory Methods 45, 1778–1793 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Bulinskaya, E., Gusak, J.: Optimal control and sensitivity analysis for two risk models. Commun. Stat. Simul. Comput. 44, 1–17 (2015)zbMATHCrossRefGoogle Scholar
  96. 96.
    Bulinskaya, E., Gusak, J., Muromskaya, A.: Discrete-time insurance model with capital injections and reinsurance. Methodol. Comput. Appl. Probab. 17(4), 899–914 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Bunyakovskij, V.Ya.: One empirical expression of the law of mortality. St. Petersburg (1869) (in Russian)Google Scholar
  98. 98.
    Cai, J.: Discrete time risk models under rates of interest. Probab. Eng. Inf. Sci. 16, 309–324 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Cai, J.: Ruin probabilities with dependent rates of interest. J. Appl. Probab. 39, 312–323 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Cai, J.: Ruin probabilities and penalty functions with stochastic rates of interest. Stoch. Process. Appl. 112, 53–78 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Cai, J.: On the time value of absolute ruin with debit interest. Adv. Appl. Probab. 39(2), 343–359 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Cai, J., Dickson, D.C.M.: Ruin probabilities with a Markov chain interest model. Insur.: Math. Econ. 35(3), 513–525 (2004)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Cai, J., Li, H.: Dependence properties and bounds for ruin probabilities in multivariate compound risk models. J. Multivar. Anal. 98, 757–773 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Cai, J., Fang, Y., Li, Z., Willmot, G.E.: Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability. J. Risk Insur. 80, 145–168 (2012)CrossRefGoogle Scholar
  105. 105.
    Campolieti, G., Makarov, R.N.: Financial Mathematics: A Comprehensive Treatment. Chapman and Hall/CRC, Boca Raton (2014)Google Scholar
  106. 106.
    Centeno, M.L., Simoes, O.: Optimal reinsurance. Revista de la Real Academia de Ciencias, RACSAM 103(2), 387–405 (2009)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Chapman, R.J.: Simple Tools and Techniques for Enterprise Risk Management. Wiley, New York (2011)Google Scholar
  108. 108.
    Chen, S., Wang, X., Deng, Y., Zeng, Y.: Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences. Insur.: Math. Econ. 70, 196–204 (2016)MathSciNetzbMATHGoogle Scholar
  109. 109.
    Cheng, Y., Tang, Q.: Moments of the surplus before ruin and the deficit at ruin in the Erlang(2) risk process. N. Am. Actuar. J. 7, 1–12 (2003)Google Scholar
  110. 110.
    Cheng, Y.B., Tang, Q.H., Yang, H.L.: Approximations for moments of deficit at ruin with exponential and subexponential claims. Stat. Probab. Lett. 59, 367–378 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Chesney, M., Jeanblanc-Picque, M., Yor, M.: Brownian excursions and Parisian barrier options. Adv. Appl. Probab. 29(1), 165–184 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Cheung, E.C.K., Feng, R.: A unified analysis of claim costs up to ruin in a Markovian arrival risk model. Insur.: Math. Econ. 53, 98–109 (2013)MathSciNetzbMATHGoogle Scholar
  113. 113.
    Cheung, E.C.K., Landriault, D.: A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model. Insur.: Math. Econ. 46(1), 127–134 (2010)MathSciNetzbMATHGoogle Scholar
  114. 114.
    Cheung, E.C.K., Landriault, D.: On a risk model with surplus-dependent premium and tax rates. Appl. Stoch. Models Bus. Ind. 14(2), 233–251 (2012)MathSciNetzbMATHGoogle Scholar
  115. 115.
    Cheung, E.C.K., Liu, H.: On the joint analysis of the total discounted payments to policyholders and shareholders: threshold dividend strategy. Ann. Actuar. Sci. 10(2), 236–269 (2016)CrossRefGoogle Scholar
  116. 116.
    Cheung, E.C.K., Landriault, D., Willmot, G.E., Woo, J.-K.: Gerber-Shiu analysis with a generalized penalty function. Scand. Actuar. J. 2010(3), 185–199 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Cheung, E.C.K., Landriault, D., Willmot, G.E., Woo, J.-K.: Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models. Insur.: Math. Econ. 46(1), 117–126 (2010)MathSciNetzbMATHGoogle Scholar
  118. 118.
    Cheung, E.C.K., Landriault, D., Badescu, A.L.: On a generalization of the risk model with Markovian claim arrivals. Stoch. Models 27(3), 407–430 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Cheung, E.C.K., Landriault, D., Willmot, G.E., Woo, J.-K.: On ordering and bounds in a generalized Sparre Andersen risk model. Appl. Stoch. Models Bus. Ind. 27(1), 51–60 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Cheung, E.C.K., Liu, H., Woo, J.-K.: On the joint analysis of the total discounted payments to policyholders and shareholders: dividend barrier strategy. Risks 3(4), 491–514 (2015)CrossRefGoogle Scholar
  121. 121.
    Chi, Y.C., Lin, X.S.: On the threshold dividend strategy for a generalized jump-diffusion risk model. Insur.: Math. Econ. 48, 326–337 (2011)MathSciNetzbMATHGoogle Scholar
  122. 122.
    Chiu, S.N., Yin, C.C.: The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion. Insur.: Math. Econ. 33, 59–66 (2003)MathSciNetzbMATHGoogle Scholar
  123. 123.
    Chiu, S.N., Yin, C.C.: On the complete monotonicity of the compound geometric convolution with applications to risk theory. Scand. Actuar. J. 2014, 116–124 (2014)MathSciNetCrossRefGoogle Scholar
  124. 124.
    Choi, M.C.H., Cheung, E.C.K.: On the expected discounted dividends in the Cramér-Lundberg risk model with more frequent ruin monitoring than dividend decisions. Insur.: Math. Econ. 59, 121–132 (2014)Google Scholar
  125. 125.
    Choulli, T., Taksar, M.: Excess-of-loss reinsurance under taxes and fixed costs. J. Risk Decis. Anal. 2, 85–102 (2010)zbMATHGoogle Scholar
  126. 126.
    Cizek, P., Härdle, W., Weron, R. (eds.): Statistical Tools for Finance and Insurance. Springer, Berlin (2005)Google Scholar
  127. 127.
    Corazza, M., Pizzi, Cl. (eds.): Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer International Publishing, Switzerland (2014)Google Scholar
  128. 128.
    Cossette, H., Marceau, E., Marri, F.: On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula. Insur.: Math. Econ. 43, 444–455 (2009)Google Scholar
  129. 129.
    Cramér, H.: Historical review of Filip Lundberg’s works on risk theory. Scand. Actuar. J. 1969, 6–9 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    Cruz, M.G., Peters, G.W., Shevchenko, P.V.: Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk. Wiley, New York (2015)Google Scholar
  131. 131.
    Cruz, M.G.: Modeling, Measuring and Hedging Operational Risk. Wiley, New York (2002)Google Scholar
  132. 132.
    Czarna, I., Palmowski, Z.: Ruin probability with Parisian delay for a spectrally negative Lévy risk process. J. Appl. Probab. 48, 984–1002 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    D’Arcy, S.P.: On becoming an actuary of the fourth kind. Proc. Casualty Actuar. Soc. XCII(177), 745–754 (2005). http://www.casact.org/pubs/proceed/proceed05/05755.pdf. Accessed 5 July 2007
  134. 134.
    D’Arcy, S.P.: On becoming an actuary of the third kind. Proc. Casualty Actuar. Soc. LXXVI, 45–76 (1989). https://www.casact.org/pubs/proceed/proceed89/89045.pdf
  135. 135.
    D’Arcy, S.: Enterprise risk management. J. Risk Manag. Korea 12(1), 207–228 (2001)Google Scholar
  136. 136.
    D’Arcy, S.P.: Risk appetite. Risk Manag. 15, 38–41 (2009)Google Scholar
  137. 137.
    Dassios, A., Wu, Sh.: On barrier strategy dividends with Parisian implementation delay for classical surplus processes. Insur.: Math. Econ. 45(2), 195–202 (2009)Google Scholar
  138. 138.
    Daykin, C.D., Pentikainen, T., Pesonen, M.: Practical Risk Theory for Actuaries. Chapman and Hall/CRC Press, Boca Raton (1993)Google Scholar
  139. 139.
    De Finetti, B.: Su un’impostazione alternativa della teoria collettiva del rischio. In: Transactions of the XV-th International Congress of Actuaries, vol. 2, pp. 433–443 (1957)Google Scholar
  140. 140.
    Decker, A., Galer, D.: Enterprise Risk Management - Straight to the Point: An Implementation Guide Function by Function (Viewpoints on ERM). CreateSpace Independent Publishing Platform (2013)Google Scholar
  141. 141.
    Deelstra, G., Plantin, G.: Risk Theory and Reinsurance. Springer, Berlin (2013)Google Scholar
  142. 142.
    Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R.: Actuarial Theory for Dependent Risks. Wiley, Chichester (2005)zbMATHCrossRefGoogle Scholar
  143. 143.
    Dickson, D.C.M.: On the distribution of the surplus prior to ruin. Insur.: Math. Econ. 11, 191–207 (1992)Google Scholar
  144. 144.
    Dickson, D.C.M.: On the distribution of the claim causing ruin. Insur.: Math. Econ. 12, 143–154 (1993)Google Scholar
  145. 145.
    Dickson, D.C.M.: Insurance Risk and Ruin. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  146. 146.
    Dickson, D.C.M., Drekic, S.: The joint distribution of the surplus prior to ruin and the deficit at ruin in some Sparre Andersen models. Insur.: Math. Econ. 34, 97–107 (2004)Google Scholar
  147. 147.
    Dickson, D.C.M., Hipp, C.: Ruin problems for phase-type(2) risk processes. Scand. Actuar. J. 2000, 147–167 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    Dickson, D.C.M., Hipp, C.: On the time to ruin for Erlang(2) risk processes. Insur.: Math. Econ. 29, 333–344 (2001)Google Scholar
  149. 149.
    Dickson, D.C.M., Waters, H.R.: Some optimal dividends problems. ASTIN Bull. 34, 49–74 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Dobrushin, R.L.: Describing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–486 (1970)zbMATHCrossRefGoogle Scholar
  151. 151.
    Doherty, N.A.: Integrated Risk Management. McGraw-Hill, New York (2000)Google Scholar
  152. 152.
    Drekic, S., Mera, A.M.: Ruin analysis of a threshold strategy in a discrete-time Sparre Andersen model. Methodol. Comput. Appl. Probab. 13, 723–747 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Drekic, S., Dickson, D.C.M., Stanford, D.A., Willmot, G.E.: On the distribution of the deficit at ruin when claims are phase-type. Scand. Actuar. J. 2004, 105–120 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    Dufresne, F., Gerber, H.U.: The surpluses immediately before and at ruin, and the amount of the claim causing ruin. Insur.: Math. Econ. 7(3), 193–199 (1988)MathSciNetzbMATHGoogle Scholar
  155. 155.
    Dufresne, F., Gerber, H.U.: Risk theory for the compound Poisson process that is perturbed by diffusion. Insur.: Math. Econ. 10, 51–59 (1991)MathSciNetzbMATHGoogle Scholar
  156. 156.
    Durrett, R.: Stochastic Calculus: A Practical Introduction. CRC Press, Boca Raton (1996)Google Scholar
  157. 157.
    Eisenberg, J., Schmidli, H.: Optimal control of capital injections by reinsurance in a diffusion approximation. Blätter der DGVFM 30, 1–13 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (2004)Google Scholar
  159. 159.
    Embrechts, P., Veraverbecke, N.: Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insur.: Math. Econ. 1, 55–72 (1982)Google Scholar
  160. 160.
    Fang, Y., Wu, R.: Optimal dividends in the Brownian motion risk model with interest. J. Comput. Appl. Math. 229, 145–151 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    Feng, R., Shimizu, Y.: Potential measures for spectrally negative Markov additive processes with applications in ruin theory. Insur.: Math. Econ. 59, 11–26 (2014)MathSciNetzbMATHGoogle Scholar
  162. 162.
    Feng, M.B., Tan, K.S.: Coherent distortion risk measures in portfolio selection. Syst. Eng. Procedia 4, 25–34 (2012)CrossRefGoogle Scholar
  163. 163.
    Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Applications of Mathematics, vol. 25. Springer, New York (1993)zbMATHGoogle Scholar
  164. 164.
    Fraser, J., Simkins, B., Narvaez, K.: Implementing Enterprise Risk Management: Case Studies and Best Practices (Robert W. Kolb Series). Wiley, New York (2014)Google Scholar
  165. 165.
    Frees, E.W.: Stochastic life contingencies with solvency considerations. Trans. Soc. Actuar. 42, 91–148 (1990)Google Scholar
  166. 166.
    Frolova, A., Kabanov, Yu., Pergamenshchikov, S.: In the insurance business risky investments are dangerous. Financ. Stoch. 6, 227–235 (2002)Google Scholar
  167. 167.
    Fu, D., Guo, Y.: On the compound Poisson model with debit interest under absolute ruin. Int. J. Sci. Res. (IJSR) 5(6), 1872–1875 (2016)CrossRefGoogle Scholar
  168. 168.
    Funston, F., Wagner, S.: Surviving and Thriving in Uncertainty: Creating the Risk Intelligent Enterprise. Wiley, New York (2010)Google Scholar
  169. 169.
    Gaier, J., Grandits, P.: Ruin probabilities in the presence of regularly varying tails and optimal investment. Insur.: Math. Econ. 30, 211–217 (2002)MathSciNetzbMATHGoogle Scholar
  170. 170.
    Gaier, J., Grandits, P.: Ruin probabilities and investment under interest force in the presence of regularly varying tails. Scand. Actuar. J. 2004(4), 256–278 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  171. 171.
    Gaier, J., Grandits, P., Schachermayer, W.: Asymptotic ruin probabilities and optimal investment. Ann. Appl. Probab. 13, 1054–1076 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  172. 172.
    Gao, S., Liu, Z.M.: The perturbed compound Poisson risk model with constant interest and a threshold dividend strategy. J. Comput. Appl. Math. 233, 2181–2188 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  173. 173.
    Gerber, H.U.: An Introduction to Mathematical Risk Theory. Huebner, Philadelphia (1979)Google Scholar
  174. 174.
    Gerber, H.U.: Der Einfluss von Zins auf die Ruinwahrscheinlichkeit. Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker. 71(1), 63–70 (1971)zbMATHGoogle Scholar
  175. 175.
    Gerber, H.U., Landry, B.: On a discounted penalty at ruin in a jump-diffusion and the perpetual put option. Insur.: Math. Econ. 22, 263–276 (1998)MathSciNetzbMATHGoogle Scholar
  176. 176.
    Gerber, H.U., Shiu, E.S.W.: The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin. Insur.: Math. Econ. 21(2), 129–137 (1997)MathSciNetzbMATHGoogle Scholar
  177. 177.
    Gerber, H.U., Shiu, E.S.W.: On the time value of ruin. N. Am. Actuar. J. 2(1), 48–78 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    Gerber, H.U., Shiu, E.S.W.: From ruin theory to pricing reset guarantees and perpetual put options. Insur.: Math. Econ. 24, 3–14 (1999)MathSciNetzbMATHGoogle Scholar
  179. 179.
    Gerber, H.U., Shiu, E.S.W.: The time value of ruin in a Sparre Andersen model. N. Am. Actuar. J. 9, 49–69 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    Gerber, H., Shiu, E.: On optimal dividends: from reflection to refraction. J. Comput. Appl. Math. 186, 4–22 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    Gerber, H.U., Shiu, E.S.W., Smith, N.: Maximizing dividends without bankruptcy. ASTIN Bull. 36(1), 5–23 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Gerber, H.U., Shiu, E.S.W., Yang, H.: The Omega model: from bankruptcy to occupation times in the red. Eur. Actuar. J. 2, 259–272 (2012)Google Scholar
  183. 183.
    Gilina, L.C.: Estimation of ruin probability for some insurance model. Prykladna Statist. Actuarna ta Financ. Matematyka. 1, 67–73 (2000)Google Scholar
  184. 184.
    Gong, L., Badescu, A.L., Cheung, E.: Recursive methods for a two-dimensional risk process with common shocks. Insur.: Math. Econ. 50, 109–120 (2012)zbMATHGoogle Scholar
  185. 185.
    Gosio, C., Lari, E., Ravera, M.: Optimal dynamic proportional and excess of loss reinsurance under dependent risks. Mod. Econ. 7, 715–724 (2016)CrossRefGoogle Scholar
  186. 186.
    Grandell, J.: Aspects of Risk Theory. Springer Series in Statistics: Probability and Its Applications. Springer, New York (1991)zbMATHCrossRefGoogle Scholar
  187. 187.
    Grandell, J.: Simple approximation of ruin probabilities. Insur.: Math. Econ. 26, 157–173 (2000)MathSciNetzbMATHGoogle Scholar
  188. 188.
    Grandits, P.: An analogue of the Cramér-Lundberg approximation in the optimal investment case. Appl. Math. Optim. 50, 1–20 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  189. 189.
    Grandits, P.: Minimal ruin probabilities and investment under interest force for a class of subexponential distributions. Scand. Actuar. J. 2005(6), 401–416 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    Grigutis, A., Korvel, A., Šiaulys, J.: Ruin probability in the three-seasonal discrete-time risk model. Mod. Stoch.: Theory Appl. 2, 421–441 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  191. 191.
    Guérin, H., Renaud, J.-F.: On distribution of cumulative Parisian ruin. arXiv:1509.06857v1 [math.PR]. 23 Sep 2015
  192. 192.
    Guo, W.: Optimal portfolio choice for an insurer with loss aversion. Insur.: Math. Econ. 58, 217–222 (2014)MathSciNetzbMATHGoogle Scholar
  193. 193.
    Guo, L., Landriault, D., Willmot, G.E.: On the analysis of a class of loss models incorporating time dependence. Eur. Actuar. J. 3(1), 273–294 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  194. 194.
    Gup, B.E.: The Basics of Investing, 5th edn. Wiley, New York (1992)Google Scholar
  195. 195.
    Gusak, D.V.: Limit problems for processes with independent increments in risk theory. IM, Kyiv (2007)Google Scholar
  196. 196.
    Hampton, J.J.: Fundamentals of enterprise risk management: how top companies assess risk, manage exposure, and seize opportunity. In: AMACOM (2009)Google Scholar
  197. 197.
    Hartung, F., Pituk, M. (eds.): Recent Advances in Delay Differential and Difference Equations. Springer, Berlin (2014)Google Scholar
  198. 198.
    Heilpern, S.: Ruin measures for a compound Poisson risk model with dependence based on the Spearman copula and the exponential claim sizes. Insur.: Math. Econ. 59, 251–257 (2014)MathSciNetzbMATHGoogle Scholar
  199. 199.
    Hernandez, C., Junca, M.: Optimal dividend payments under a time of ruin constraint: exponential claims. Insur.: Math. Econ. 65, 136–142 (2015)MathSciNetzbMATHGoogle Scholar
  200. 200.
    Heywood, G.: Edmond Halley - actuary. Q. J. R. Astron. Soc. 35(1), 151–154 (1994)MathSciNetGoogle Scholar
  201. 201.
    Hipp, C.: Dividend payment with ruin constraint: working paper (2016). https://www.researchgate.net/publication/291339576
  202. 202.
    Hipp, C.: Stochastic control for insurance: models, strategies and numerics (2016). https://www.researchgate.net/publication/308695862
  203. 203.
    Hipp, C., Plump, M.: Optimal investment for insurers. Insur.: Math. Econ. 27(2), 215–228 (2000)MathSciNetzbMATHGoogle Scholar
  204. 204.
    Hipp, C., Plump, M.: Optimal investment for investors with state dependent income, and for insurers. Financ. Stoch. 7(3), 299–321 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  205. 205.
    Hipp, C., Schmidli, H.: Asymptotics of ruin probabilities for controlled risk processes in the small claims case. Scand. Actuar. J. 2004(5), 321–335 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    Hipp, C., Taksar, M.: Optimal non-proportional reinsurance control. Insur.: Math. Econ. 47, 246–254 (2010)MathSciNetzbMATHGoogle Scholar
  207. 207.
    Hipp, C., Vogt, M.: Optimal dynamic XL reinsurance. ASTIN Bull. 33(2), 193–207 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  208. 208.
    Horcher, K.A.: Essentials of Financial Risk Management. Wiley, New York (2005)CrossRefGoogle Scholar
  209. 209.
    Hu, X., Zhang, L.: Ruin probability in a correlated aggregate claims model with common Poisson shocks: application to reinsurance. Methodol. Comput. Appl. Probab. 18(3), 675–689 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  210. 210.
    Hürlimann, W.: Mean-variance portfolio selection under portfolio insurance. In: Proceedings of the AFIR, Nürnberg, Germany, pp. 347–374 (1996)Google Scholar
  211. 211.
    Hürlimann, W.: A simple multi-state gamma claims reserving model. Int. J. Contemp. Math. Sci. 10(2), 65–77 (2015)CrossRefGoogle Scholar
  212. 212.
    Iglehart, D.L.: Diffusion approximations in collective risk theory. J. Appl. Probab. 6, 285–292 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  213. 213.
    Ihedioha, S., Osu, B.: Optimal portfolios of an insurer and a reinsurer under proportional reinsurance and power utility preference. Open Access Libr. J. 2(12), 1–11 (2015)Google Scholar
  214. 214.
    Ivanovs, J., Palmowski, Z.: Occupation densities in solving exit problems for Markov additive processes and their reflections. Stoch. Process. Appl. 122(9), 3342–3360 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  215. 215.
    Jacobsen, M.: Point Processes, Theory and Applications. Birkhauser, Boston (2005)Google Scholar
  216. 216.
    Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  217. 217.
    Janssen, J., Manca, R.: Semi-Markov Risk Models for Finance, Insurance and Reliability. Springer, Berlin (2007)zbMATHGoogle Scholar
  218. 218.
    Jasiulewicz, H.: Discrete-time financial surplus models for insurance companies. Coll. Econ. Anal. Ann. 21, 225–255 (2010)Google Scholar
  219. 219.
    Jeanblanc-Piqué, M., Shiryaev, A.N.: Optimization of the flow of dividends. Uspekhi Mat. Nauk. 50(2(302)), 25–46 (1995)Google Scholar
  220. 220.
    Jiang, W.Y., Yang, Z.J., Li, X.P.: The discounted penalty function with multi-layer dividend strategy in the phase-type risk model. Insur.: Math. Econ. 82, 1358–1366 (2012)MathSciNetzbMATHGoogle Scholar
  221. 221.
    Kaas, R., Goovaerts, M., Dhaene, J., Denuit, M.: Modern Actuarial Risk Theory. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  222. 222.
    Kabanov, Yu., Pergamenshchikov, S.: In the insurance business risky investments are dangerous: the case of negative risk sums. Financ. Stoch. 20(2), 355–379 (2016)Google Scholar
  223. 223.
    Kalashnikov, V., Norberg, R.: Power tailed ruin probabilities in the presence of risky investments. Stoch. Process. Appl. 98, 221–228 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  224. 224.
    Karageyik, B.B., Şahin, Ş.: A review on optimal reinsurance under ruin probability constraint. J. Stat.: Stat. Actuar. Sci. 9(1), 26–36 (2016)Google Scholar
  225. 225.
    Karapetyan, N.V.: Dividends and reinsurance. In: Proceedings of the 6th International Workshop on Simulation, VVM com.Ltd, pp. 47–52 (2009)Google Scholar
  226. 226.
    Karapetyan, N.V.: Optimization and limit distribution in a discrete insurance model. Mod. Probl. Math. Mech. 10(3), 101–120 (2015) (in Russian)Google Scholar
  227. 227.
    Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, New York (1998)zbMATHCrossRefGoogle Scholar
  228. 228.
    Kennedy, D.: Stochastic Financial Models. Chapman and Hall/CRC, Boca Raton (2010)zbMATHGoogle Scholar
  229. 229.
    Kim, S.S., Drekic, S.: Ruin analysis of a discrete-time dependent Sparre Andersen model with external financial activities and randomized dividends. Risks 4(2), 1–15 (2016)Google Scholar
  230. 230.
    Klebaner, F.: Introduction to Stochastic Calculus with Applications. World Scientific Publishing Company, Singapore (1999)zbMATHGoogle Scholar
  231. 231.
    Klugman, S.A., Panjer, H.H., Willmot, G.E.: Student Solutions Manual to Accompany Loss Models: From Data to Decisions, 4th edn. Wiley, New York (2012)Google Scholar
  232. 232.
    Klugman, S.A., Panjer, H.H., Willmot, G.E.: Loss Models: From Data to Decisions, 3rd edn. Wiley, Hoboken (2008)zbMATHCrossRefGoogle Scholar
  233. 233.
    Koller, G.: Risk Assessment and Decision Making in Business and Industry: A Practical Guide, 2nd edn. Chapman and Hall/CRC, Boca Raton (2005)Google Scholar
  234. 234.
    Koller, M.: Stochastic Models in Life Insurance. Springer, Berlin (2012)zbMATHCrossRefGoogle Scholar
  235. 235.
    Konstantinides, D.G., Li, J.: Asymptotic ruin probabilities for a multidimensional renewal risk model with multivariate regularly varying claims. Insur.: Math. Econ. 69, 38–44 (2016)MathSciNetzbMATHGoogle Scholar
  236. 236.
    Konstantopoulos, T., Papadakis, S.N., Walrand, J.: Functional approximation theorems for controlled renewal processes. J. Appl. Probab. 31, 765–776 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  237. 237.
    Korolev, V., Bening, V., Shorgin, S.: Mathematical Foundations of Risk Theory. Fizmatlit, Moscow (2007)zbMATHGoogle Scholar
  238. 238.
    Kostić, M.: Abstract Volterra Integro-Differential Equations. CRC Press, Boca Raton (2015)Google Scholar
  239. 239.
    Kulenko, N., Schmidli, H.: Optimal dividend strategies in a Cramér-Lundberg model with capital injections. Insur.: Math. Econ. 43, 270–278 (2008)zbMATHGoogle Scholar
  240. 240.
    Kulkarni, V.G.: A new class of multivariate phase type distributions. Oper. Res. 37, 151–158 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  241. 241.
    Kyprianou, A.E.: Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin (2006)Google Scholar
  242. 242.
    Kyprianou, A.: Gerber-Shiu Risk Theory. Springer International Publishing, Switzerland (2013)Google Scholar
  243. 243.
    Kyprianou, A.E., Loeffen, R.L.: Refracted Lévy processes. Ann. Inst. H. Poincaré Probab. Stat. 46(1), 24–44 (2010)zbMATHCrossRefGoogle Scholar
  244. 244.
    Kyprianou, A.E., Zhou, X.W.: General tax structures and the Lévy insurance risk model. J. Appl. Probab. 46(4), 1146–1156 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  245. 245.
    Kyprianou, A.E., Loeffen, R., Perez, J.-L.: Optimal control with absolutely continuous strategies for spectrally negative Lévy processes (2010). arXiv:1008.2363
  246. 246.
    Labbé, C.D., Sendova, K.P.: The expected discounted penalty function under a risk model with stochastic income. Appl. Math. Comput. 215, 1852–1867 (2009)MathSciNetzbMATHGoogle Scholar
  247. 247.
    Labbé, C.D., Sendov, H.S., Sendova, K.P.: The Gerber-Shiu function and the generalized Cramér-Lundberg model. Appl. Math. Comput. 218, 3035–3056 (2011)MathSciNetzbMATHGoogle Scholar
  248. 248.
    Lam, J.: Enterprise Risk Management: From Incentives to Controls, 2nd edn. Wiley, New York (2014)Google Scholar
  249. 249.
    Landriault, D., Li, B., Li, S.: Drawdown analysis for the renewal insurance risk process. Scand. Actuar. J. 2016, 1–19. doi: 10.1080/03461238.2015.1123174
  250. 250.
    Landriault, D.: On a generalization of the expected discounted penalty function in a discrete-time insurance risk model. Appl. Stoch. Models Bus. Ind. 24(6), 525–539 (2008)MathSciNetCrossRefGoogle Scholar
  251. 251.
    Landriault, D., Shi, T.: First passage time for compound Poisson processes with diffusion: ruin theoretical and financial applications. Scand. Actuar. J. 2014(4), 368–382 (2014)MathSciNetCrossRefGoogle Scholar
  252. 252.
    Landriault, D., Shi, T.: Occupation times in the MAP risk model. Insur.: Math. Econ. 60(1), 75–82 (2015)MathSciNetzbMATHGoogle Scholar
  253. 253.
    Landriault, D., Renaud, J.-F., Zhou, X.: Occupation times of spectrally negative Lévy processes with applications. Stoch. Process. Appl. 212(11), 2629–2641 (2011)zbMATHCrossRefGoogle Scholar
  254. 254.
    Landriault, D., Shi, T., Willmot, G.E.: Joint density involving the time to ruin in the Sparre Andersen risk model under the exponential assumption. Insur.: Math. Econ. 49(3), 371–379 (2011)zbMATHGoogle Scholar
  255. 255.
    Landriault, D., Lemieux, C., Willmot, G.E.: An adaptive premium policy with a Bayesian motivation in the classical risk model. Insur.: Math. Econ. 51(2), 370–378 (2012)MathSciNetzbMATHGoogle Scholar
  256. 256.
    Landriault, D., Lee, W.Y., Willmot, G.E., Woo, J.-K.: A note on deficit analysis in dependency models involving Coxian claim amounts. Scand. Actuar. J. 2014(5), 405–423 (2014)MathSciNetCrossRefGoogle Scholar
  257. 257.
    Landriault, D., Renaud, J.-F., Zhou, X.: An insurance risk model with Parisian implementation delays. Methodol. Comput. Appl. Probab. 16(3), 583–607 (2014)Google Scholar
  258. 258.
    Landriault, D., Willmot, G.E., Xu, D.: On the analysis of time dependent claims in a class of birth process claim count models. Insur.: Math. Econ. 58, 168–173 (2014)MathSciNetzbMATHGoogle Scholar
  259. 259.
    Landriault, D., Li, B., Li, S.: Analysis of a drawdown-based regime-switching Lévy insurance model. Insur.: Math. Econ. 60(1), 98–107 (2015)zbMATHGoogle Scholar
  260. 260.
    Lee, W.Y., Willmot, G.E.: On the moments of the time to ruin in dependent Sparre Andersen models with emphasis on Coxian interclaim times. Insur.: Math. Econ. 59, 1–10 (2014)MathSciNetzbMATHGoogle Scholar
  261. 261.
    Lefèvre, C., Loisel, S.: Finite-time ruin probabilities for discrete, possibly dependent, claim severities. Methodol. Comput. Appl. Probab. 11(3), 425–441 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  262. 262.
    Li, S.: On a class of discrete time renewal risk models. Scand. Actuar. J. 2005(4), 241–260 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  263. 263.
    Li, S.: Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time risk models. Scand. Actuar. J. 2005(4), 271–284 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  264. 264.
    Li, S.: The distribution of the dividend payments in the compound Poisson risk model perturbed by diffusion. Scand. Actuar. J. 2006(2), 73–85 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  265. 265.
    Li, S., Dickson, D.C.M.: The maximum surplus before ruin in an Erlang(n) risk process and related problems. Insur.: Math. Econ. 38(3), 529–539 (2006)MathSciNetzbMATHGoogle Scholar
  266. 266.
    Li, S., Garrido, J.: On ruin for the Erlang(n) risk process. Insur.: Math. Econ. 34, 391–408 (2004)MathSciNetzbMATHGoogle Scholar
  267. 267.
    Li, S., Garrido, J.: On a general class of renewal risk process: analysis of the Gerber-Shiu function. Adv. Appl. Probab. 37(3), 836–856 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  268. 268.
    Li, S., Garrido, J.: The Gerber-Shiu function in a Sparre Andersen risk process perturbed by diffusion. Scand. Actuar. J. 2005(3), 161–186 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  269. 269.
    Li, S., Garrido, J.: Ruin probabilities for two classes of risk processes. ASTIN Bull. 35, 61–77 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  270. 270.
    Li, S.M., Lu, Y.: Moments of the dividend payments and related problems in a Markov-modulated risk model. N. Am. Actuar. J. 11(2), 65–76 (2007)MathSciNetCrossRefGoogle Scholar
  271. 271.
    Li, S., Lu, Y.: The decompositions of the discounted penalty functions and dividends-penalty identity in a Markov-modulated risk model. ASTIN Bull. 38(1), 53–71 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  272. 272.
    Li, S., Lu, Y., Garrido, J.: A review of discrete-time risk models. Rev. R. Acad. Cien. Serie A. Mat. 103, 321–337 (2009)Google Scholar
  273. 273.
    Li, S., Sendova, K.P.: The finite-time ruin probability under the compound binomial model. Eur. Actuar. J. 3(1), 249–271 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  274. 274.
    Li, Z., Sendova, K.P.: On a ruin model with both interclaim times and premiums depending on claim sizes. Scand. Actuar. J. 2015(3), 245–265 (2015)MathSciNetCrossRefGoogle Scholar
  275. 275.
    Li, P., Yin, C., Zhou, M.: Dividend payments with a hybrid strategy in the compound Poisson risk model. Appl. Math. 5, 1933–1949 (2014)CrossRefGoogle Scholar
  276. 276.
    Li, D., Rong, X., Zhao, H.: Optimal investment problem for an insurer and a reinsurer. J. Syst. Sci. Complex. 28(6), 1326–1348 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  277. 277.
    Li, S., Landriault, D., Lemieux, C.: A risk model with varying premiums: its risk management implications. Insur.: Math. Econ. 60(1), 38–46 (2015)MathSciNetzbMATHGoogle Scholar
  278. 278.
    Liang, Zh., Guo, J.: Optimal investment and proportional reinsurance in the Sparre Andersen model. J. Syst. Sci. Complex. 25(5), 926–941 (2012)Google Scholar
  279. 279.
    Lin, X.S., Pavlova, K.P.: The compound Poisson risk model with a threshold dividend strategy. Insur.: Math. Econ. 38, 57–80 (2006)MathSciNetzbMATHGoogle Scholar
  280. 280.
    Lin, X.S., Sendova, K.P.: The compound Poisson risk model with multiple thresholds. Insur.: Math. Econ. 42, 617–627 (2008)MathSciNetzbMATHGoogle Scholar
  281. 281.
    Lin, X.S., Willmot, G.E.: The moments of the time of ruin, the surplus before ruin, and the deficit at ruin. Insur.: Math. Econ. 27, 19–44 (2000)MathSciNetzbMATHGoogle Scholar
  282. 282.
    Liu, H.: On the joint analysis of discounted aggregate claim costs until ruin and other ruin-related quantities. Thesis. The University of Hong Kong Libraries, University of Hong Kong (2015)Google Scholar
  283. 283.
    Liu, Ch., Zhang, Zh.: A note on a generalized discounted penalty function in a Sparre Andersen risk model perturbed by diffusion. Abstr. Appl. Anal. 2013, 6 p (2013)Google Scholar
  284. 284.
    Liu, Zh., Zhang, A., Li, C.: The expected discounted tax payments on dual risk model under a dividend threshold. Open J. Stat. 3, 136–144 (2013)Google Scholar
  285. 285.
    Liu, J., Xu, J.C., Hu, H.C.: The Markov-dependent risk model with a threshold dividend strategy. Wuhan Univ. J. Nat. Sci. 16(3), 193–198 (2011)Google Scholar
  286. 286.
    Liu, J., Xu, J.: A note on absolute ruin probability in a Markov risk model. In: 2011 International Conference on Electric Information and Control Engineering (ICEICE) (2011). doi: 10.1109/ICEICE.2011.5777660
  287. 287.
    Liu, D.H., Liu, Z.M.: The perturbed compound Poisson risk model with linear dividend barrier. J. Comput. Appl. Math. 235, 2357–2363 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  288. 288.
    Livshits, K., Yakimovich, K.: Cramér-Lundberg model with stochastic premiums and continuous non-insurance costs. In: Dudin, A., et al. (eds.) Information Technology and Mathematical Modelling, vol. 487, pp. 251–260. Springer, Berlin (2014)Google Scholar
  289. 289.
    Lkabous, M.A., Czarna, I., Renaud, J.-F.: Parisian ruin for a refracted Lévy process. arXiv:1603.09324v1 [math.PR]. Accessed 30 Mar 2016
  290. 290.
    Loeffen, R.L., Patie, P.: Absolute ruin in the Ornstein-Uhlenbeck type risk model (2010). arXiv:1006.2712
  291. 291.
    Loeffen, R.: On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes. Ann. Appl. Probab. 18, 1669–1680 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  292. 292.
    Loeffen, R., Renaud, J.F.: De Finetti’s optimal dividends problem with an affine penalty function at ruin. Insur.: Math. Econ. 46, 98–108 (2010)MathSciNetzbMATHGoogle Scholar
  293. 293.
    Loeffen, R., Czarna, I., Palmowski, Z.: Parisian ruin probability for spectrally negative Lévy processes. Bernoulli 19(2), 599–609 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  294. 294.
    Lu, Y., Li, S.: On the probability of ruin in a Markov-modulated risk model. Insur.: Math. Econ. 37(3), 522–532 (2005)MathSciNetzbMATHGoogle Scholar
  295. 295.
    Luo, S., Taksar, M.: Optimal excess-of-loss reinsurance under borrowing constraints. J. Risk Decis. Anal. 2, 103–123 (2010)zbMATHGoogle Scholar
  296. 296.
    Luo, S., Taksar, M.: On absolute ruin minimization under a diffusion approximation model. Insur.: Math. Econ. 48(1), 123–133 (2011)MathSciNetzbMATHGoogle Scholar
  297. 297.
    Markov, A.A.: Calculus of Probability. St. Petersburg (1908) (in Russian)Google Scholar
  298. 298.
    Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)Google Scholar
  299. 299.
    Martin-Löf, A.: Harald Cramér and insurance mathematics. Appl. Stoch. Models Data Anal. 11, 271–276 (1995)CrossRefGoogle Scholar
  300. 300.
    McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton (2005)Google Scholar
  301. 301.
    Mehr, R.I., Hedges, B.A.: Risk Management in the Business Enterprise. Richard D. Irwin, Inc., Homewood (1963)Google Scholar
  302. 302.
    Melnikov, A.: Risk Analysis in Finance and Insurance, 2nd edn. Chapman and Hall/CRC, Boca Raton (2011)Google Scholar
  303. 303.
    Meyers, G.G.: Stochastic Loss Reserving Using Bayesian MCMC Models. Casualty Actuarial Society, New York (2015)Google Scholar
  304. 304.
    Mikosch, T.: Non-life Insurance Mathematics. Springer, Berlin (2004)Google Scholar
  305. 305.
    Ming, R.X., Wang, W.Y., Xiao, L.Q.: On the time value of absolute ruin with tax. Insur.: Math. Econ. 46(1), 67–84 (2010)MathSciNetzbMATHGoogle Scholar
  306. 306.
    Minkova, L.D.: The Polya-Aeppli process and ruin problems. J. Appl. Math. Stoch. Anal. 3, 221–234 (2004)zbMATHCrossRefGoogle Scholar
  307. 307.
    Mircea, I., Covrig, M.: A discrete time insurance model with reinvested surplus and a fuzzy number interest rate. Procedia Econ. Financ. 32, 1005–1011 (2015)CrossRefGoogle Scholar
  308. 308.
    Mishura, Yu., Perestyuk, M., Ragulina, O.: Ruin probability in a risk model with variable premium intensity and risky investments. Opusc. Math. 35(3), 333–352 (2015)Google Scholar
  309. 309.
    Mitov, K.V., Omey, E.: Renewal Processes. Springer, Berlin (2014)Google Scholar
  310. 310.
    Mitric, I.-R., Sendova, K.P.: On a multi-threshold compound Poisson surplus process with interest. Scand. Actuar. J. 2011(2), 75–95 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  311. 311.
    Mitric, I.-R., Sendova, K.P., Tsai, C.C.-L.: On a multi-threshold compound Poisson process perturbed by diffusion. Stat. Probab. Lett. 80, 366–375 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  312. 312.
    Mitric, I.R., Badescu, A.L., Stanford, D.: On the absolute ruin in a Sparre Andersen risk model with constant interest. Insur.: Math. Econ. 50, 167–178 (2012)MathSciNetzbMATHGoogle Scholar
  313. 313.
    Mnif, M., Sulem, A.: Optimal risk control and dividend policies under excess of loss reinsurance. Stochastics 77(5), 455–476 (2005)MathSciNetzbMATHGoogle Scholar
  314. 314.
    Muromskaya, A.: A generalization of Lundberg inequality for the case of a joint-stock insurance company. Vestnik Moskovskogo Universiteta. Seriya 1: Matematica, Mekhanica. 72(1), 32–36 (2017) (in Russian)Google Scholar
  315. 315.
    Muromskaya, A.A.: Optimal reinsurance in the model with several risks within one insurance policy. Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], vol. 2016(4), pp. 79–97 (2016) (in Russian)Google Scholar
  316. 316.
    Muromskaya, A.: Discounted dividends in a strategy with a step barrier function. Moscow Univ. Math. Bull. 71(5), 200–203 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  317. 317.
    Murphy, D.: Understanding Risk: The Theory and Practice of Financial Risk Management. Chapman and Hall/CRC, Boca Raton (2008)Google Scholar
  318. 318.
    Nakayama, H., Sawaragi, Y., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Waltham (1985)zbMATHGoogle Scholar
  319. 319.
    Ng, A.C.Y.: On a dual model with a dividend threshold. Insur.: Math. Econ. 44, 315–324 (2009)MathSciNetzbMATHGoogle Scholar
  320. 320.
    Ng, A.C.Y.: On the upcrossing and downcrossing probabilities of a dual risk model with phase-type gains. ASTIN Bull. 40, 281–306 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  321. 321.
    Nie, C., Dickson, D.C.M., Li, Sh.: Minimizing the ruin probability through capital injections. Ann. Actuar. Sci. 5, 195–209 (2011)Google Scholar
  322. 322.
    Nie, C., Dickson, D.C.M., Li, Sh.: The finite time ruin probability in a risk model with capital injections. Scand. Actuar. J. 2015(4), 301–318 (2015)Google Scholar
  323. 323.
    Note on enterprise risk management for capital and solvency purposes in the insurance industry. http://www.actuaries.org. Accessed 31 Mar 2009
  324. 324.
    Oakley, J.E., O’Hagan, A.: Probabilistic sensitivity analysis of complex models: a Bayesian approach. J. R. Stat. Soc. B. 66, Part 3, 751–769 (2004)Google Scholar
  325. 325.
    Oh, K., Kang, H.: A discrete time pricing model for individual insurance contracts. J. Insur. Issues 27(1), 41–65 (2004)Google Scholar
  326. 326.
    Ohlsson, E., Johansson, B.: Non-life Insurance Pricing with Generalized Linear Models. Springer, Berlin (2010)zbMATHCrossRefGoogle Scholar
  327. 327.
    Oksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer, Universitext (2005)Google Scholar
  328. 328.
    Oksendal, B.: Stochastic Differential Equations. Springer Verlag, Universitext (2013)Google Scholar
  329. 329.
    Olivieri, A., Pitacco, E.: Introduction to Insurance Mathematics. Technical and Financial Features of Risk Transfers. Springer, Berlin (2015)zbMATHCrossRefGoogle Scholar
  330. 330.
    Outreville, J.F.: Theory and Practice of Insurance. Springer, Berlin (1998)Google Scholar
  331. 331.
    Paulsen, J.: Ruin theory with compounding assets - a survey. Insur.: Math. Econ. 22, 3–16 (1998)Google Scholar
  332. 332.
    Paulsen, J.: On Cramér-like asymptotics for risk processes with stochastic return on investments. Ann. Appl. Probab. 12, 1247–1260 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  333. 333.
    Paulsen, J.: Ruin models with investment income. Probab. Surv. 5, 416–434 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  334. 334.
    Paulsen, J., Gjessing, H.K.: Ruin theory with stochastic return on investments. Adv. Appl. Probab. 29, 965–985 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  335. 335.
    Pavlova, K.P., Willmot, G.E.: The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function. Insur.: Math. Econ. 35, 267–277 (2004)Google Scholar
  336. 336.
    Peng, L.: Joint tail of ECOMOR and LCR reinsurance treaties. Insur.: Math. Econ. 59, 116–120 (2014)MathSciNetzbMATHGoogle Scholar
  337. 337.
    Peng, X., Wang, W.: Optimal investment and risk control for an insurer under inside information. Insur.: Math. Econ. 69, 104–116 (2016)MathSciNetzbMATHGoogle Scholar
  338. 338.
    Peng, X., Chen, F., Hu, Y.: Optimal investment, consumption and proportional reinsurance under model uncertainty. Insur.: Math. Econ. 59, 222–234 (2014)MathSciNetzbMATHGoogle Scholar
  339. 339.
    Pentikainen, T., Bornsdorff, H., Pesonen, M., Rantala, J., Ruohonen, M.: Insurance Solvency and Financial Strength. Finnish Insurance Training and Publishing Company Ltd., Helsinki (1989)Google Scholar
  340. 340.
    Pergamenshchikov, S., Zeitouny, O.: Ruin probability in the presence of risky investments. Stoch. Process. Appl. 116(2), 267–278 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  341. 341.
    Perna, C., Sibillo, M. (eds.): Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer, Berlin (2014)Google Scholar
  342. 342.
    Peters, G.W., Dong, A.X.D., Kohn, R.: A copula based Bayesian approach for paid-incurred claims models for non-life insurance reserving. Insur.: Math. Econ. 59, 258–278 (2014)MathSciNetzbMATHGoogle Scholar
  343. 343.
    Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer, Berlin (2009)Google Scholar
  344. 344.
    Picard, P., Lefèvre, C.: Probabilité de ruine éventuelle dans un modèle de risque à temps discret. J. Appl. Probab. 40(3), 543–556 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  345. 345.
    Picard, P., Lefèvre, C., Coulibaly, I.: Problèmes de ruine en théorie du risque à temps discret avec horizon fini. J. Appl. Probab. 40, 527–542 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  346. 346.
    Picard, P., Lefèvre, C., Coulibaly, I.: Multirisks model and finite-time ruin probabilities. Methodol. Comput. Appl. Probab. 5, 337–353 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  347. 347.
    Pitacco, E.: Health Insurance. Basic Actuarial Models. Springer, Switzerland (2014)zbMATHGoogle Scholar
  348. 348.
    Prabhu, N.U.: Stochastic Storage Processes. Queues, Insurance Risk, Dams and Data Communications. Springer, New York (2012)zbMATHGoogle Scholar
  349. 349.
    Promyslow, D.S.: Fundamentals of Actuarial Mathematics, 2nd edn. Wiley, New York (2011)Google Scholar
  350. 350.
    Qi, X.: Analysis of the generalized Gerber-Shiu function in discrete-time dependent Sparre Andersen model. Thesis. The University of Hong Kong Libraries, University of Hong Kong (2016)Google Scholar
  351. 351.
    Quang, P.D.: Ruin probability in a generalized risk process under interest force with homogenous Markov chain premiums. Int. J. Stat. Probab. 2(4), 85–92 (2013)CrossRefGoogle Scholar
  352. 352.
    Rachev, S.T., Stoyanov, S.V., Fabozzi, F.J.: Advanced Stochastic Models, Risk Assessment, Portfolio Optimization. Wiley, Hoboken (2008)Google Scholar
  353. 353.
    Rachev, S.T., Klebanov, L., Stoyanov, S.V., Fabozzi, F.: The Methods of Distances in the Theory of Probability and Statistics. Springer, New York (2013)zbMATHCrossRefGoogle Scholar
  354. 354.
    Ramaswami, V.: Passage times in fluid models with application to risk processes. Methodol. Comput. Appl. Probab. 8, 497–515 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  355. 355.
    Reinhard, J.M.: On a class of semi-Markov risk models obtained as classical risk models in a Markovian enviroment. ASTIN Bull. 14, 23–43 (1984)CrossRefGoogle Scholar
  356. 356.
    Ren, J.: The discounted joint distribution of the surplus prior to ruin and the deficit at ruin in a Sparre Andersen model. N. Am. Actuar. J. 11, 128–136 (2007)MathSciNetCrossRefGoogle Scholar
  357. 357.
    Renaud, J.-F.: On the time spent in the red by a refracted Lévy risk process. J. Appl. Probab. 51(4), 1171–1188 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  358. 358.
    Renaud, J.-F., Zhou, X.: Distribution of the dividend payments in a general Lévy risk model. J. Appl. Probab. 44, 420–427 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  359. 359.
    R̆ezác̆, M., R̆ezác̆, F.: How to measure the quality of credit scoring models. Finance a úvĕr (Czech J. Econ. Financ.) 61(5), 486–507 (2011)Google Scholar
  360. 360.
    Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Generalized deviations in risk analysis. Financ. Stoch. 10, 51–74 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  361. 361.
    Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.L.: Stochastic Processes for Insuarance and Finance. Wiley, Chichester (1999)zbMATHCrossRefGoogle Scholar
  362. 362.
    Şahin, Ş., Cairns, A.J.G., Kleinow, T., Wilkie, A.D.: Comparison of the Wilkie model and a “Yield-Macro Model” for UK data. http://www.actuaries.org/lyon2013/papers/AFIR-Sahin-Cairns-Kleinow-Wilkie.pdf
  363. 363.
    Şahin, Ş., Cairns, A.J.G., Kleinow, T., Wilkie, A.D.: Revisiting the Wilkie investment model. http://www.actuaries.org/AFIR/Colloquia/Rome2/Cairns-Kleinow-Sahin-Wilkie.pdf
  364. 364.
    Saltelli, A., Tarantola, S., Campolongo, F.: Sensitivity analysis as an ingredient of modeling. Stat. Sci. 15, 377–395 (2000)MathSciNetCrossRefGoogle Scholar
  365. 365.
    Sandström, A.: Handbook of Solvency for Actuaries and Risk Managers: Theory and Practice. Chapman and Hall/CRC Press, Boca Raton (2011)Google Scholar
  366. 366.
    Sato, K.: Lévy Process and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  367. 367.
    Savich, S.E.: Elementary Theory of Life Insurance and Disability. SPb., 1900 (3rd edn. Yanus-K 2003) (in Russian)Google Scholar
  368. 368.
    Savitsch, S. von: Der Einfluss der Dimensionen des Feuerrisikos auf den Prämiensatz. Zeitschrift für die gesamte Versicherungswissenschaft (1907)Google Scholar
  369. 369.
    Schmidli, H.: On minimizing the ruin probability by investment and reinsurance. Ann. Appl. Probab. 12, 890–907 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  370. 370.
    Schmidli, H.: Stochastic Control in Insurance. Springer, New York (2008)zbMATHGoogle Scholar
  371. 371.
    Seal, H.L.: The Stochastic Theory of a Risk Business. Wiley, New York (1969)zbMATHGoogle Scholar
  372. 372.
    Sendova, K.P.: Discrete Lundberg-type bounds with actuarial applications. ESAIM: Probab. Stat. 11, 217–235 (2007)Google Scholar
  373. 373.
    Sendova, K.P., Zang, Y.: Interest bearing surplus model with liquid reserves. J. Insur. Issues 33(2), 178–196 (2010)Google Scholar
  374. 374.
    Sendova, K.P., Zitikis, R.: The order-statistic claim process with dependent claim frequencies and severities. J. Stat. Theory Pract. 6, 597–620 (2012)MathSciNetCrossRefGoogle Scholar
  375. 375.
    Shang, H. (ed.): Actuarial Science: Theory and Methodology. World Scientific, Singapore (2006)Google Scholar
  376. 376.
    Shen, Y., Yin, C.: Optimal dividend problem for a compound Poisson risk model. Appl. Math. 5, 1496–1502 (2014)CrossRefGoogle Scholar
  377. 377.
    Shi, T., Landriault, D.: Distribution of the time to ruin in some Sparre Andersen risk models. Astin Bull. 43(1), 39–59 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  378. 378.
    Shija, G., Jacob, M.J.: Expected discounted penalty function of Markov-modulated, constant barrier and stochastic income model. IOSR J. Math. 9(6), 34–42 (2014)CrossRefGoogle Scholar
  379. 379.
    Shiraishi, H.: Review of statistical actuarial risk modelling. Cogent Math. 3, 1123945 (2016). http://dx.doi.org/10.1080/23311835.2015.1123945
  380. 380.
    Shiryaev, A.N., Grossinho, M.D.R., Oliveira, P.E., Esquível, M.L. (eds.): Stochastic Finance. Springer, Berlin (2006)Google Scholar
  381. 381.
    Shiryaev, A.N.: Actuarial and financial business: current state of art and perspectives of development. Rev. Appl. Ind. Math. 1(5), 684–697 (1994) (in Russian)Google Scholar
  382. 382.
    Shorack, G.R., Wellner, J.A.: Empirical Processes with Application to Statistics. Wiley, New York (1986)zbMATHGoogle Scholar
  383. 383.
    Silvestrov, D., Martin-Löf, A. (eds.): Modern Problems in Insurance Mathematics. Springer, Berlin (2014)Google Scholar
  384. 384.
    Simkins, B., Fraser, J.: Enterprise Risk Management: Today’s Leading Research and Best Practices for Tomorrow’s Executives. Wiley, New York (2010)Google Scholar
  385. 385.
    Smith Jr., C.W.: On the convergence of insurance and finance research. J. Risk Insur. 53(4), 693–717 (1986)CrossRefGoogle Scholar
  386. 386.
    Sobol, I.M.: Sensitivity analysis for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)zbMATHGoogle Scholar
  387. 387.
    Song, R., Vondracek, Z.: On suprema of Lévy processes and application in risk theory. Ann. lnst. H. Poincare Probab. Stat. 44, 977–986 (2008)zbMATHCrossRefGoogle Scholar
  388. 388.
    Stanford, D.A., Avram, F., Badescu, A.L., Breuer, L., Da Silva Soares, A., Latouche, G.: Phase-type approximations to finite-time ruin probabilities in the Sparre Andersen and stationary renewal risk models. ASTIN Bull. 35, 131–144 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  389. 389.
    Sun, Y., Wei, L.: The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks. Insur.: Math. Econ. 59, 178–183 (2014)MathSciNetzbMATHGoogle Scholar
  390. 390.
    Taksar, M., Markussen, C.: Optimal dynamic reinsurance policies for large insurance portfolios. Financ. Stoch. 7, 97–121 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  391. 391.
    Taksar, M., Zeng, X.: Optimal non-proportional reinsurance control and stochastic differential games. Insur.: Math. Econ. 48, 64–71 (2011)MathSciNetzbMATHGoogle Scholar
  392. 392.
    Tankov, P., Cont, R.: Financial modelling with jump processes. Chapman and Hall/CRC, Boca Raton (2003)Google Scholar
  393. 393.
    Temnov, G.: Risk process with random income. J. Math. Sci. 123(1), 3780–3794 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  394. 394.
    Temnov, G.: Risk models with stochastic premium and ruin probability estimation. J. Math. Sci. 196(1), 84–96 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  395. 395.
    Tsai, C.C.-L.: A generalized defective renewal equation for the surplus process perturbed by diffusion. Insur.: Math. Econ. 30(1), 51–66 (2002)MathSciNetzbMATHGoogle Scholar
  396. 396.
    Tsanakas, A., Beck, M.B., Thompson, M.: Taming uncertainty: the limits to quantification. ASTIN Bull. 46, 1–7 (2016)MathSciNetCrossRefGoogle Scholar
  397. 397.
    Tuncel, A.: Survival probabilities for compound binomial risk model with discrete phase-type claims. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 65(2), 11–22 (2016)MathSciNetzbMATHGoogle Scholar
  398. 398.
    Turnbull, C.: A History of British Actuarial Thought. Springer, Berlin (2016)Google Scholar
  399. 399.
    Ungureanu, D., Vernic, R.: On a fuzzy cash flow model with insurance applications. Decis. Econ. Financ. 38(1), 39–54 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  400. 400.
    Wan, N.: Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion. Insur.: Math. Econ. 40, 509–523 (2007)MathSciNetzbMATHGoogle Scholar
  401. 401.
    Wang, C., Yin, C.: Dividend payments in the classical risk model under absolute ruin with debit interest. Appl. Stoch. Models Bus. Ind. 25(3), 247–262 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  402. 402.
    Wang, C.W., Yin, C.C., Li, E.Q.: On the classical risk model with credit and debit interests under absolute ruin. Stat. Probab. Lett. 80, 427–436 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  403. 403.
    Wang, X., Wang, W., Zhang, C.: Ornstein-Uhlenback type Omega model. Front. Math. China 11(3), 735–751 (2016)Google Scholar
  404. 404.
    Wat, K.: Discrete-time insurance risk models with dependence structures. Thesis. The University of Hong Kong Libraries, University of Hong Kong (2012)Google Scholar
  405. 405.
    Wei, J., Wang, R., Yang, H.: On the optimal dividend strategy in a regime-switching diffusion model. Adv. Appl. Probab. 44, 866–906 (2012)MathSciNetCrossRefGoogle Scholar
  406. 406.
    Wilkie, A.D.: A stochastic investment model for actuarial use. Trans. Fac. Actuar. 39, 341–403 (1986)CrossRefGoogle Scholar
  407. 407.
    Wilkie, D.: Whither AFIR? Editorial. ASTIN Bull. 21(1), 1–3 (1991)CrossRefGoogle Scholar
  408. 408.
    Wilkie, A.D.: More on a stochastic asset model for actuarial use. Br. Actuar. J. 1(5), 777–964 (1995)CrossRefGoogle Scholar
  409. 409.
    Wilkie, A.D., Şahin, Ş., Cairns, A.J.G., Kleinow, T.: Yet more on a stochastic economic model: part 1: updating and refitting, 1995 to 2009. Ann. Actuar. Sci. 5, 53–99 (2010)CrossRefGoogle Scholar
  410. 410.
    Willmot, G.E.: A Laplace transform representation in a class of renewal queueing and risk process. J. Appl. Probab. 36, 570–584 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  411. 411.
    Willmot, G.E.: Compound geometric residual lifetime distributions and the deficit at ruin. Insur.: Math. Econ. 30, 421–438 (2002)MathSciNetzbMATHGoogle Scholar
  412. 412.
    Willmot, G.E.: On the discounted penalty function in the renewal risk model with general interclaim times. Insur.: Math. Econ. 41, 17–31 (2007)MathSciNetzbMATHGoogle Scholar
  413. 413.
    Willmot, G.E., Lin, X.S.: Lundberg Approximations for Compound Distributions with Insurance Applications. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  414. 414.
    Wong, T.J.: On some Parisian problems in ruin theory. University of Hong Kong, Pokfulam, Hong Kong SAR (2014). http://dx.doi.org/10.5353/th-b5317068
  415. 415.
    Wong, J.T.Y., Cheung, E.C.K.: On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps. Insur.: Math. Econ. 65, 280–290 (2015)MathSciNetzbMATHGoogle Scholar
  416. 416.
    Wu, X., Li, S.: On a discrete-time Sparre Andersen model with phase-type claims. http://fbe.unimelb.edu.au/--data/assets/pdf-file/0005/806279/169.pdf
  417. 417.
    Wu, Y.: Bounds for the ruin probability under a Markovian modulated risk model. Commun. Stat. Stoch. Models 15(1), 125–136 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  418. 418.
    Wüthrich, M.V., Merz, M.: Stochastic claims reserving manual: advances in dynamic modeling. Swiss Finance Institute Research Paper No. 15–34 (2015)Google Scholar
  419. 419.
    Wüthrich, M.V.: Market-Consistent Actuarial Valuation, 3rd edn. Springer, Berlin (2016)Google Scholar
  420. 420.
    Wüthrich, M.V., Merz, M.: Financial Modeling, Actuarial Valuation and Solvency in Insurance. Springer, Berlin (2013)zbMATHCrossRefGoogle Scholar
  421. 421.
    Wüthrich, M.V., Bühlmann, H., Furrer, H.: Market-Consistent Actuarial Valuation. Springer, Berlin (2010)zbMATHCrossRefGoogle Scholar
  422. 422.
    Xue, C.: Absolute ruin probability of a multi-type-insurance risk model. Int. J. Appl. Math. Stat. 53(1), 74–81 (2015)MathSciNetzbMATHGoogle Scholar
  423. 423.
    Yan, D.: Some results on a double compound Poisson-geometric risk model with interference. Theor. Econ. Lett. 2(1), 45–49 (2012)CrossRefGoogle Scholar
  424. 424.
    Yang, H., Li, J.: Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Insur.: Math. Econ. 58, 185–192 (2014)MathSciNetzbMATHGoogle Scholar
  425. 425.
    Yang, Y., Yuen, K.C.: Asymptotics for a discrete-time risk model with gamma-like insurance risks. Scand. Actuar. J. 2016(6), 565–579 (2016)MathSciNetCrossRefGoogle Scholar
  426. 426.
    Yang, Y., Leipus, R., Siaulys, J.: On the ruin probability in a dependent discrete time risk model with insurance and financial risks. J. Comput. Appl. Math. 236(13), 3286–3295 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  427. 427.
    Yang, H., Gao, W., Li, J.: Asymptotic ruin probabilities for a discrete-time risk model with dependent insurance and financial risks. Scand. Actuar. J. 2016(1), 1–17 (2016)MathSciNetCrossRefGoogle Scholar
  428. 428.
    Yin, C., Wen, Y., Zhao, Y.: On the optimal dividend problem for a spectrally positive Lévy process. arXiv:1302.2231v4 [q-fin.PM]. Accessed 10 Mar 2014
  429. 429.
    Yin, C.C., Wang, C.W.: Optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes: an alternative approach. J. Comput. Appl. Math. 233, 482–491 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  430. 430.
    Yin, C.C., Wen, Y.Z.: An extension of Paulsen-Gjessing’s risk model with stochastic return on investments. Insur.: Math. Econ. 52, 469–476 (2013)MathSciNetzbMATHGoogle Scholar
  431. 431.
    Yu, W., Huang, Y.: Dividend payments and related problems in a Markov-dependent insurance risk model under absolute ruin. Am. J. Ind. Bus. Manag. 1(1), 1–9 (2011)Google Scholar
  432. 432.
    Yuen, K.C., Guo, J., Wu, X.: On a correlated aggregate claims model with Poisson and Erlang risk processes. Insur.: Math. Econ. 31, 205–214 (2002)zbMATHGoogle Scholar
  433. 433.
    Zhang, Z.: On a risk model with randomized dividend-decision times. J. Ind. Manag. Optim. 10(4), 1041–1058 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  434. 434.
    Zhang, Z., Cheung, E.C.K.: The Markov additive risk process under an Erlangized dividend barrier strategy. Methodol. Comput. Appl. Probab. 18(2), 275–306 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  435. 435.
    Zhang, Z., Yang, H.: Gerber-Shiu analysis in a perturbed risk model with dependence between claim sizes and interclaim times. J. Comput. Appl. Math. 235(5), 1189–1204 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  436. 436.
    Zhang, Z., Yang, H.: Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation. Insur.: Math. Econ. 59, 168–177 (2014)zbMATHGoogle Scholar
  437. 437.
    Zhang, H.Y., Zhou, M., Guo, J.Y.: The Gerber-Shiu discounted penalty function for classical risk model with a two-step premium rate. Stat. Probab. Lett. 76, 1211–1218 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  438. 438.
    Zhang, Z., Li, S., Yang, H.: The Gerber-Shiu discounted penalty functions for a risk model with two classes of claims. J. Comput. Appl. Math. 230, 643–655 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  439. 439.
    Zhao, Q., Wei, J., Wang, R.: On dividend strategies with non-exponential discounting. Insur.: Math. Econ. 58(1), 1–13 (2014)MathSciNetzbMATHGoogle Scholar
  440. 440.
    Zheng, Y., Cui, W.: Optimal reinsurance with premium constraint under distortion risk measures. Insur.: Math. Econ. 59, 109–120 (2014)MathSciNetzbMATHGoogle Scholar
  441. 441.
    Zheng, Y., Cui, W., Yang, J.: Optimal reinsurance under distortion risk measures and expected value premium principle for reinsurer. J. Syst. Sci. Complex. 28(1), 122–143 (2015)zbMATHCrossRefGoogle Scholar
  442. 442.
    Zhu, J., Yang, H.: Estimates for the absolute ruin probability in the compound Poisson risk model with credit and debit interest. J. Appl. Probab. 45(3), 818–830 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  443. 443.
    Zhu, Y., Chi, Y., Weng, C.: Multivariate reinsurance designs for minimizing an insurer’s capital requirement. Insur.: Math. Econ. 59, 144–155 (2014)MathSciNetzbMATHGoogle Scholar
  444. 444.
    Zinchenko, N., Andrusiv, A.: Risk process with stochastic premiums. Theory Stoch. Process. 14(30), 189–208 (2008)MathSciNetzbMATHGoogle Scholar
  445. 445.
    Zou, B., Cadenillas, A.: Optimal investment and risk control policies for an insurer: expected utility maximization. Insur.: Math. Econ. 58, 57–67 (2014)MathSciNetzbMATHGoogle Scholar
  446. 446.
    Zou, B., Cadenillas, A.: Optimal investment and liability ratio policies in a multidimensional regime switching model. Risks 5(1), 6 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations