Convergence to Equilibrium for Many Particle Systems

  • Alexander LykovEmail author
  • Vadim Malyshev
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 208)


The goal of this paper is to give a short review of recent results of the authors concerning classical Hamiltonian many-particle systems. We hope that these results support the new possible formulation of Boltzmann’s ergodicity hypothesis which sounds as follows. For almost all potentials, the minimal contact with external world, through only one particle of N, is sufficient for ergodicity. But only if this contact has no memory. Also new results for quantum case are presented.


Markov processes Boltzmann hypothesis Quantum controllability 


  1. 1.
    Altafini, C.: Controllability of quantum mechanical systems by root space decomposition of su(N). J. Math. Phys. 43(5), 2051–2062 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Azais, R., Bardet, J.-B., Genadot, A., Krell, N., Zitt, P.-A.: Piecewise deterministic Markov process - recent results. arXiv:1309.6061 (2013)
  3. 3.
    Bruneau, L., Joye, A., Merkli, M.: Repeated interactions in open quantum systems. J. Math. Phys. 55, 075204 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Buric, N.: Reduction of infinite-dimensional Hamiltonian system in classical and quantum mechanicsGoogle Scholar
  5. 5.
    D’Alessandro, D.: Introduction to Quantum Control and Dynamics. Taylor & Francis, London (2008)zbMATHGoogle Scholar
  6. 6.
    Dunford, N., Schwartz, J.: Linear Operators. Part 1. Interscience, New York (1958)zbMATHGoogle Scholar
  7. 7.
    Grenander, U.: Probabilities on Algebraic Structures. Wiley, New York (1963)zbMATHGoogle Scholar
  8. 8.
    Heslot, A.: Classical mechanics and the electron spin. Am. J. Phys. 51, 1096–1102 (1983)CrossRefGoogle Scholar
  9. 9.
    Heslot, A.: Quantum mechanics as a classical theory. Phys. Rev. D 31(6), 1341–1348 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  11. 11.
    Kifer, Yu.: Random Perturbations of Dynamical Systems. Birkhauser, Boston (1988)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lloyd, S.: Almost any quantum logic gate is universal. Phys. Rev. Lett. 75(2), 346–349 (1995)CrossRefGoogle Scholar
  13. 13.
    Lykov, A.A., Malyshev, V.A.: Harmonic chain with weak dissipation. Markov Process. Relat. Fields 18(4), 721–729 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lykov, A.A., Malyshev, V.A.: Role of the memory in convergence to invariant Gibbs measure. Dokl. Math. 88(2), 513–515 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lykov, A.A., Malyshev, V.A.: Convergence to Gibbs equilibrium - unveiling the mystery. Markov Process. Relat. Fields 19, 4 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lykov, A.A., Malyshev, V.A.: A new approach to Boltzmann’s ergodic hypothesis. Dokl. Math. 92(2), 624–626 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lykov, A.A., Malyshev, V.A.: Liouville ergodicity of linear multi-particle Hamiltonian systems with one marked particle velocity flips. Markov Process. Relat. Fields 2, 381–412 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lykov, A.A., Malyshev, V.A., Muzychka, S.A.: Linear hamiltonian systems under microscopic random influence. Theory Probab. Appl. 57(4), 684–688 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Orey, S.: Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand, London (1971)zbMATHGoogle Scholar
  21. 21.
    Ponomarev, S.: Submersions and pre-images of sets of zero measure. Sib. Math. J. 28(1), 199–210 (1987)CrossRefGoogle Scholar
  22. 22.
    Portenko, N., Skorohod, A., Shurenkov, V.: Markov Processes. Itogi nauki i tehniki. VINITI, Moscow (1989)zbMATHGoogle Scholar
  23. 23.
    Revuz, D.: Markov Chains. North Holland, New York (1984)zbMATHGoogle Scholar
  24. 24.
    Szasz, D.: Boltzmann’s Ergodicity Hypothesis, A Conjecture for Centuries? Lecture (1994)Google Scholar
  25. 25.
    Weaver, N.: On the universality of almost every quantum logic gate. J. Math. Phys. 41(1), 240–243 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Weaver, N.: Time optimal control of finite quantum systems. J. Math. Phys. 41(8), 5262–5269 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations