Random Walks in Nonhomogeneous Poisson Environment

  • Youri Davydov
  • Valentin KonakovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 208)


In the first part of the paper, we consider a “random flight” process in \(R^d\) and obtain the weak limits under different transformations of the Poissonian switching times. In the second part, we construct diffusion approximations for this process and investigate their accuracy. To prove the weak convergence result, we use the approach of [15]. We consider more general model which may be called “random walk over ellipsoids in \(R^d\)”. For this model, we establish the Edgeworth-type expansion. The main tool in this part is the parametrix method [5, 7].


Random walks Random flights Random nonhomogeneous environment Diffusion approximation Parametrix method 



Sincere thanks are due to the referees whose suggestions and comments have helped us to revise the article.


  1. 1.
    Billingsley, P.: Convergence of Probability Measures. John Wiley and Sons, New York (1968)Google Scholar
  2. 2.
    Gikhman, I.I., Skorohod, A.V..: Introduction to the Theory of Random Processes. Dover Publications (1996)Google Scholar
  3. 3.
    Gradshtein, I., Ryzhik, I.: Table of Integrals, Series and Products, 6th edn. Academic Press (2000)Google Scholar
  4. 4.
    Kolesnik, A.D. The explicit probability distribution of a six-dimensional random flight, Theory Stoch. Process 15(30), 1, 33–39 (2009)Google Scholar
  5. 5.
    Konakov, V.: Metod parametriksa dlya diffusii i cepei Markova, Preprint (in Russian), Izdatel’stvo popechitel’skogo soveta mehaniko-matematiceskogo fakul’teta MGU, Seriya WP BRP “STI”. (2012)Google Scholar
  6. 6.
    Kluyver, J.C.: A local probability problem. In: Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 8, pp. 341–350 (1905)Google Scholar
  7. 7.
    Konakov, V., Mammen, E.: Small time Edgeworth-type expansions for weakly convergent non homogenious Markov chains. PTRF 143, 137–176 (2009)zbMATHGoogle Scholar
  8. 8.
    Mandelbrot, B.: The Fractal Geometry of Nature, New York (1982)Google Scholar
  9. 9.
    Orsingher, E., De Gregorio, A.: Reflecting random flights. J. Stat. Phys. 160(6), 1483–1506 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Orsingher, De Gregorio: Random flights in higher spaces. J. Theor. Probab. 20(4), 769–806 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Orsingher, E., Garra, R.: Random flights governed by Klein-Gordon type partial differential equations. Stoch. Proc. Appl. 124, 2171–2187 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Orsingher, E., De Gregorio, A.: Flying randomly in \(R^{d}\) with Dirichlet displacements. Stoch. Proc. Appl. 122, 676–713 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pearson, K.: The problem of the Random Walk. Nature 72(1865), 294 (1905)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rayleigh, L.: On the problem of the random flights and of random vibrations in one, two and three dimensions. Philos. Mag. 37, 321–347 (1919)CrossRefzbMATHGoogle Scholar
  15. 15.
    Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)Google Scholar
  16. 16.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn., Cambridge (1927)Google Scholar
  17. 17.
    Yadrenko, M.I.: Spectral Theory of Random Fields. Springer, Berlin (1983)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations