Advertisement

Higher-Order Targeted Loss-Based Estimation

  • Marco Carone
  • Iván Díaz
  • Mark J. van der Laan
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

The objective of this chapter is to describe how the TMLE framework can be generalized to explicitly utilize higher-order rather than first-order asymptotic representations. The practical significance of this is to provide guidelines for constructing estimators that have sound behavior in finite samples and are asymptotically efficient under less restrictive conditions.

References

  1. P.J. Bickel, On adaptive estimation. Ann. Stat. 10, 647–671 (1982)CrossRefzbMATHGoogle Scholar
  2. P.J. Bickel, C.A.J. Klaassen, Y. Ritov, J. Wellner, Efficient and Adaptive Estimation for Semiparametric Models (Springer, Berlin, Heidelberg, New York, 1997b)Google Scholar
  3. M. Carone, I. Díaz, M.J. van der Laan, Higher-order targeted minimum loss-based estimation. Technical Report, Division of Biostatistics, University of California, BerkeleyGoogle Scholar
  4. I. Díaz, M. Carone, M.J. van der Laan, Second-order inference for the mean of a variable missing at random. Int. J. Biostat. 12(1), 333–349 (2016)MathSciNetCrossRefGoogle Scholar
  5. R.D. Gill, M.J. van der Laan, J.A. Wellner, Inefficient estimators of the bivariate survival function for three models. Ann. l’Institut Henri Poincaré 31(3), 545–597 (1995)MathSciNetzbMATHGoogle Scholar
  6. S. Gruber, M.J. van der Laan, An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. Int. J. Biostat. 6(1) (2010a)Google Scholar
  7. S. Gruber, M.J. van der Laan, Targeted minimum loss based estimator that outperforms a given estimator. Int. J. Biostat. 8(1), (2012b)Google Scholar
  8. I.A. Ibragimov, R.Z. Khasminskii, Statistical Estimation (Springer, Berlin, 1981)CrossRefzbMATHGoogle Scholar
  9. S.D. Lendle, B. Fireman, M.J. van der Laan, Balancing score adjusted targeted minimum loss-based estimation. Technical Report, Division of Biostatistics, University of California, Berkeley (2013)Google Scholar
  10. B.Y. Levit, On the efficiency of a class of non-parametric estimates. Theory Probab. Appl. 20(4), 723–740 (1975)CrossRefzbMATHGoogle Scholar
  11. L. Li, E. Tchetgen Tchetgen, A.W. van der Vaart, J.M. Robins, Higher order inference on a treatment effect under low regularity conditions. Stat. Probab. Lett. 81(7), 821–828 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. J. Pfanzagl, Contributions to a General Asymptotic Statistical Theory (Springer, Berlin, 1982)CrossRefzbMATHGoogle Scholar
  13. J. Pfanzagl, Asymptotic Expansions for General Statistical Models, vol. 31 (Springer, Berlin, 1985)zbMATHGoogle Scholar
  14. E.C Polley, S. Rose, M.J. van der Laan, Super-learning, in Targeted Learning: Causal Inference for Observational and Experimental Data, ed. by M.J. van der Laan, S. Rose (Springer, Berlin, Heidelberg, New York, 2011)Google Scholar
  15. J.M. Robins, L. Li, E. Tchetgen Tchetgen, A.W. van der Vaart, Higher order influence functions and minimax estimation of nonlinear functionals, in Probability and Statistics: Essays in Honor of David A. Freedman, (Institute of Mathematical Statistics, 2008a), pp. 335–421Google Scholar
  16. J.M. Robins, L. Li, E. Tchetgen Tchetgen, A.W. van der Vaart, Quadratic Semiparametric Von Mises calculus. Metrika 69(2–3), 227–247 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. D.B. Rubin, M.J. van der Laan, Targeted ANCOVA estimator in RCTs, in Targeted Learning (Springer, Berlin, 2011), pp. 201–215Google Scholar
  18. O.M. Stitelman, M.J. van der Laan, Collaborative targeted maximum likelihood for time-to-event data. Int. J. Biostat. 6(1), Article 21 (2010)Google Scholar
  19. M.J. van der Laan, Targeted estimation of nuisance parameters to obtain valid statistical inference. Int. J. Biostat. 10(1), 29–57 (2014b)Google Scholar
  20. M.J. van der Laan, S. Dudoit, Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: finite sample oracle inequalities and examples. Technical Report, Division of Biostatistics, University of California, Berkeley (2003)Google Scholar
  21. M.J. van der Laan, S. Gruber, Collaborative double robust penalized targeted maximum likelihood estimation. Int. J. Biostat. 6(1), Article 17 (2010)Google Scholar
  22. M.J. van der Laan, E.C. Polley, A.E. Hubbard, Super learner. Stat. Appl. Genet. Mol. 6(1), Article 25 (2007)Google Scholar
  23. M.J. van der Laan, S. Rose, Targeted Learning: Causal Inference for Observational and Experimental Data (Springer, Berlin, Heidelberg, New York, 2011)CrossRefGoogle Scholar
  24. M.J. van der Laan, D.B. Rubin, Targeted maximum likelihood learning. Int. J. Biostat. 2(1), Article 11 (2006)Google Scholar
  25. A.W. van der Vaart, Higher order tangent spaces and influence functions. Stat. Sci. 29(4), 679–686 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes (Springer, Berlin, Heidelberg, New York, 1996)CrossRefzbMATHGoogle Scholar
  27. A.W. van der Vaart, S. Dudoit, M.J. van der Laan, Oracle inequalities for multi-fold cross-validation. Stat. Decis. 24(3), 351–371 (2006)MathSciNetzbMATHGoogle Scholar
  28. H. Wang, S. Rose, M.J. van der Laan, Finding quantitative trait loci genes with collaborative targeted maximum likelihood learning. Stat. Probab. Lett. 81(7), 792–796 (2011a)Google Scholar
  29. W. Zheng, M.J. van der Laan, Asymptotic theory for cross-validated targeted maximum likelihood estimation. Technical Report, Division of Biostatistics, University of California, Berkeley (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marco Carone
    • 1
  • Iván Díaz
    • 2
  • Mark J. van der Laan
    • 3
  1. 1.Department of Biostatistics, University of Washington, F-644 Health Sciences BuildingSeattleUSA
  2. 2.Division of Biostatistics and EpidemiologyDepartment of Healthcare Policy and Research, Weill Cornell Medical College, Cornell UniversityNew YorkUSA
  3. 3.Division of Biostatistics and Department of Statistics, University of California, BerkeleyBerkeleyUSA

Personalised recommendations