Skip to main content

Single Time Point Interventions in Network-Dependent Data

  • Chapter
  • First Online:
Targeted Learning in Data Science

Abstract

Consider a study in which we collect data on N units connected by a social network. For each unit i = 1, , N, we record baseline covariate (W i ), exposure (A i ), and outcome of interest (Y i ) information. We also observe the set F i that consists of the units in {1, , N}∖{i} that are connected to and could influence the unit i. The set F i constitutes “i’s friends”. We allow | F i |, the total number of friends of i, to vary in i. In addition, we assume that | F i | goes to zero when scaled by 1∕N. For example, F i could represent the set of all the friends of i in a social network, or the set of all of i’s sexual partners in a study of the effects of early HIV treatment initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumption will be also referred to as the weak dependence of W.

  2. 2.

    Note that we have previously defined F i as F i ∪{ i}.

References

  • S. Aral, D. Walker, Identifying social influence in networks using randomized experiments. IEEE Intell. Syst. 26(5), 91–96 (2011)

    Article  Google Scholar 

  • S. Aral, D. Walker, Tie strength, embeddedness, and social influence: a large-scale networked experiment. Manag. Sci. 60(6), 1352–1370 (2014)

    Article  Google Scholar 

  • P.M. Aronow, C. Samii, Estimating average causal effects under interference between units. ArXiv e-prints, May (2013)

    MATH  Google Scholar 

  • A.-L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • G.W. Basse, E.M. Airoldi, Optimal design of experiments in the presence of network-correlated outcomes. ArXiv e-prints, July (2015)

    Google Scholar 

  • J. Bowers, M.M. Fredrickson, C. Panagopoulos, Reasoning about interference between units: a general framework. Polit. Anal. 21(1), 97–124 (2013)

    Article  Google Scholar 

  • D.S. Choi, Estimation of monotone treatment effects in network experiments. ArXiv e-prints, August (2014)

    Google Scholar 

  • N.A. Christakis, J.H. Fowler, The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357(4), 370–379 (2007)

    Article  Google Scholar 

  • N.A. Christakis, J.H. Fowler, Social contagion theory: examining dynamic social networks and human behavior. Stat. Med. 32(4), 556–577 (2013)

    Article  MathSciNet  Google Scholar 

  • A.P. Dawid, V. Didelez, Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview. Stat. Surv. 4, 184–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • L. Liu, M.G. Hudgens, Large sample randomization inference of causal effects in the presence of interference. J. Am. Stat. Assoc. 109(505), 288–301 (2014). ISSN 0162-1459

    Google Scholar 

  • R. Lyons, The spread of evidence-poor medicine via flawed social-network analysis. Stat. Politics Policy 2(1) 1–26 (2010)

    Article  Google Scholar 

  • E.L. Ogburn, T.J. VanderWeele, Vaccines, contagion, and social networks. ArXiv e-prints, March (2014)

    MATH  Google Scholar 

  • E.L. Ogburn, O. Sofrygin, M.J. van der Laan, I. Diaz, Causal inference for social network data with contagion. ArXiv e-prints, October (2017)

    Google Scholar 

  • J.M. Robins, Addendum to: “A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect”. Comput. Math. Appl. 14(9–12), 923–945 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • P.R. Rosenbaum, Interference Between Units in Randomized Experiments. J. Am. Stat. Assoc. 102(477), 191–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • O. Sofrygin, M.J. van der Laan, R. Neugebauer, Simcausal R package: conducting transparent and reproducible simulation studies of causal effect estimation with complex longitudinal data. J. Stat. Softw. 81, 2 (2017)

    Article  Google Scholar 

  • O. Sofrygin, M.J. van der Laan, tmlenet: targeted maximum likelihood estimation for network data (2015)

    Google Scholar 

  • O. Sofrygin, M.J. van der Laan, Semi-parametric estimation and inference for the mean outcome of the single time-point intervention in a causally connected population. J. Causal Inference 5(1), 20160003 (2017)

    Google Scholar 

  • C. Steglich, T.A.B. Snijders, M. Pearson, Dynamic networks and behavior: separating selection from influence. Sociol. Methodol. 40(1), 329–393 (2010)

    Article  Google Scholar 

  • E.J. Tchetgen Tchetgen, T.J. VanderWeele. On causal inference in the presence of interference. Stat. Methods Med. Res. 21(1), 55–75 (2012)

    Article  MathSciNet  Google Scholar 

  • P. Toulis, E. Kao, Estimation of causal peer influence effects, in Proceedings of The 30th International Conference on Machine Learning (2013), pp. 1489–1497

    Google Scholar 

  • M.J. van der Laan, Causal inference for a population of causally connected units. J. Causal Inference 2(1), 13–74 (2014a)

    Google Scholar 

  • T.J VanderWeele, Sensitivity analysis for contagion effects in social networks. Sociol. Methods Res. 40(2), 240–255 (2011)

    Google Scholar 

  • T.J. VanderWeele, Inference for influence over multiple degrees of separation on a social network. Stat. Med. 32(4), 591–596 (2013)

    Article  MathSciNet  Google Scholar 

  • T.J. VanderWeele, W. An, Social networks and causal inference, in Handbook of Causal Analysis for Social Research (Springer, Berlin, 2013), pp. 353–374

    Book  Google Scholar 

  • T.J. VanderWeele, E.L. Ogburn, E.J. Tchetgen Tchetgen, Why and when “flawed” social network analyses still yield valid tests of no contagion. Stat. Polit. Policy 3(1), 2151–2160 (2012c)

    Google Scholar 

  • T.J. VanderWeele, E.J. Tchetgen Tchetgen, M.E. Halloran, Interference and sensitivity analysis. Stat. Sci. 29(4), 687–706 (2014b)

    Google Scholar 

  • D. Walker, L. Muchnik, Design of randomized experiments in networks. Proc. IEEE 102(12), 1940–1951 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Sofrygin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sofrygin, O., Ogburn, E.L., van der Laan, M.J. (2018). Single Time Point Interventions in Network-Dependent Data. In: Targeted Learning in Data Science. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-65304-4_21

Download citation

Publish with us

Policies and ethics