Skip to main content

Causal Inference in Longitudinal Network-Dependent Data

  • Chapter
  • First Online:
Targeted Learning in Data Science

Part of the book series: Springer Series in Statistics ((SSS))

Abstract

Much of the existing causal inference literature focuses on the effect of a single or multiple time-point intervention on an outcome based on observing longitudinal data on n independent units that are not causally connected. The causal effect is then defined as an expectation of the effect of the intervention assigned to the unit on their outcome, and causal effects of the intervention on other units on the unit’s outcome are assumed nonexistent. As a consequence, causal models only have to be concerned with causal relations between the components of the unit-specific data structure. Statistical inference is based on the assumption that the n data structures are n independent realizations of a random variable. However, in many CRTs or observational studies of few communities, the number of independent units is not large enough to allow statistical inference based on limit distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See references in Sect. 20.9 for implications of incorrectly ignoring interference.

References

  • P.M. Aronow, C. Samii, Estimating average causal effects under interference between units. ArXiv e-prints, May (2013)

    MATH  Google Scholar 

  • P.J. Bickel, C.A.J. Klaassen, Y. Ritov, J. Wellner, Efficient and Adaptive Estimation for Semiparametric Models (Springer, Berlin, Heidelberg, New York, 1997b)

    Google Scholar 

  • M.J. Campbell, A. Donner, N. Klar, Developments in cluster randomized trials and statistics in medicine. Stat. Med. 26, 2–19 (2007)

    Article  MathSciNet  Google Scholar 

  • A. Chambaz, M.J. van der Laan, Targeting the optimal design in randomized clinical trials with binary outcomes and no covariate: theoretical study. Int. J. Biostat. 7(1), Article 10 (2011a)

    Google Scholar 

  • A. Chambaz, M.J. van der Laan, Targeting the optimal design in randomized clinical trials with binary outcomes and no covariate: simulation study. Int. J. Biostat. 7(1), Article 11 (2011b)

    Google Scholar 

  • N.A. Christakis, J.H. Fowler, The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357(4), 370–379 (2007)

    Article  Google Scholar 

  • N.A. Christakis, J.H. Fowler, Social contagion theory: examining dynamic social networks and human behavior. Stat. Med. 32(4), 556–577 (2013)

    Article  MathSciNet  Google Scholar 

  • V. Didelez, A.P. Dawid, S. Geneletti, Direct and indirect effects of sequential treatments, in Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (2006), pp. 138–146

    Google Scholar 

  • A. Donner, N. Klar, Design and Analysis of Cluster Randomization Trials in Health Research (Arnold, London, 2000)

    Google Scholar 

  • R.D. Gill, J.M. Robins, Causal inference in complex longitudinal studies: continuous case. Ann. Stat. 29(6), 1785–1811 (2001)

    Article  MATH  Google Scholar 

  • M.E. Halloran, C.J. Struchiner, Causal inference in infectious diseases. Epidemiology 6(2), 142–151 (1995)

    Article  Google Scholar 

  • R.J. Hayes, L.H. Moulton, Cluster Randomised Trials. (Chapman & Hall/CRC, Boca Raton, 2009)

    Google Scholar 

  • F. Hu, W.F. Rosenberger, The Theory of Response Adaptive Randomization in Clinical Trials (Wiley, New York, 2006)

    Book  MATH  Google Scholar 

  • M.G. Hudgens, M.E. Halloran, Toward causal inference with interference. J. Am. Stat. Assoc. 103(482), 832–842 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Lyons, The spread of evidence-poor medicine via flawed social-network analysis. Stat. Politics Policy 2(1) 1–26 (2010)

    Article  Google Scholar 

  • E.L. Ogburn, O. Sofrygin, M.J. van der Laan, I. Diaz, Causal inference for social network data with contagion. ArXiv e-prints, October (2017)

    Google Scholar 

  • J. Pearl, Causality: Models, Reasoning, and Inference, 2nd edn. (Cambridge, New York, 2009a)

    Google Scholar 

  • D.B. Rubin, Matched Sampling for Causal Effects (Cambridge, Cambridge, MA, 2006)

    Book  MATH  Google Scholar 

  • C.R. Shalizi, A.C. Thomas, Homophily and contagion are generically confounded in observational social network studies. Sociol. Methods Res. 40(2), 211–239 (2011)

    Article  MathSciNet  Google Scholar 

  • M. Sobel, What do randomized studies of housing mobility demonstrate? J. Am. Stat. Assoc. 101(476), 1398–1407 (2006)

    Article  MATH  Google Scholar 

  • E.J. Tchetgen Tchetgen, T.J. VanderWeele. On causal inference in the presence of interference. Stat. Methods Med. Res. 21(1), 55–75 (2012)

    Article  MathSciNet  Google Scholar 

  • A.A. Tsiatis, Semiparametric Theory and Missing Data. (Springer, Berlin, Heidelberg, New York, 2006)

    Google Scholar 

  • M.J. van der Laan, Estimation based on case-control designs with known prevalence probability. Int. J. Biostat. 4(1), Article 17 (2008a)

    Google Scholar 

  • M.J. van der Laan, Targeted maximum likelihood based causal inference: Part I. Int. J. Biostat. 6(2), Article 2 (2010a)

    Google Scholar 

  • M.J. van der Laan, Targeted maximum likelihood based causal inference: Part II. Int. J. Biostat. 6(2), Article 3 (2010b)

    Google Scholar 

  • M.J. van der Laan, Causal inference for networks. Technical Report, Division of Biostatistics, University of California, Berkeley (2012)

    Google Scholar 

  • M.J. van der Laan, Causal inference for a population of causally connected units. J. Causal Inference 2(1), 13–74 (2014a)

    Google Scholar 

  • M.J. van der Laan, J.M. Robins, Unified Methods for Censored Longitudinal Data and Causality (Springer, Berlin Heidelberg New York, 2003)

    Book  MATH  Google Scholar 

  • M.J. van der Laan, S. Rose, Targeted Learning: Causal Inference for Observational and Experimental Data (Springer, Berlin, Heidelberg, New York, 2011)

    Book  Google Scholar 

  • M.J. van der Laan, D.B. Rubin, Targeted maximum likelihood learning. Int. J. Biostat. 2(1), Article 11 (2006)

    Google Scholar 

  • M.J. van der Laan, L.B. Balzer, M.L. Petersen, Adaptive matching in randomized trials and observational studies. J. Stat. Res. 46(2), 113–156 (2013a)

    Google Scholar 

  • A.W. van der Vaart, Asymptotic Statistics (Cambridge, New York, 1998)

    Book  MATH  Google Scholar 

  • A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes (Springer, Berlin, Heidelberg, New York, 1996)

    Book  MATH  Google Scholar 

  • T.J. VanderWeele, W. An, Social networks and causal inference, in Handbook of Causal Analysis for Social Research (Springer, Berlin, 2013), pp. 353–374

    Book  Google Scholar 

  • T.J. VanderWeele, J.P. Vandenbrouke, E.J. Tchetgen Tchetgen, J.M. Robins, A mapping between interactions and interference: implications for vaccine trials. Epidemiology 23(3), 285–292 (2012b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Sofrygin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sofrygin, O., van der Laan, M.J. (2018). Causal Inference in Longitudinal Network-Dependent Data. In: Targeted Learning in Data Science. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-65304-4_20

Download citation

Publish with us

Policies and ethics