Comparative Effectiveness of Adaptive Treatment Strategies

  • Romain S. Neugebauer
  • Julie A. Schmittdiel
  • Patrick J. O’Connor
  • Mark J. van der Laan
Part of the Springer Series in Statistics book series (SSS)


In this chapter, we describe secondary analyses of electronic health record (EHR) data from a type 2 diabetes mellitus (T2DM) study of the effect of four adaptive treatment strategies on a time-to-event outcome. More specifically, we describe a TMLE and compare its practical performance to that of three IPW estimators of the same causal estimands defined based on the same nonparametric dynamic marginal structural model. In addition, we evaluate the practical impact of parametric versus data-adaptive estimation of the nuisance parameters on causal inferences from the four estimators considered. Note that the work presented here is a summary of prior results described across several published articles (Neugebauer et al. 201220132014a,b2016).


  1. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2549 (2008)Google Scholar
  2. ADVANCE Collaborative Group, Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2562 (2008)Google Scholar
  3. H. Bang, J.M. Robins, Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962–972 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. D. Benkeser, M. Carone, M.J. van der Laan, P. Gilbert, Doubly-robust nonparametric inference on the average treatment effect. Biometrika. 104(4), 863–880 (2017a)MathSciNetGoogle Scholar
  5. L.E. Cain, J.M. Robins, E. Lanoy, R. Logan, D. Costagliola, M.A. Hernan, When to start treatment? A systematic approach to the comparison of dynamic regimes using observational data. Int. J. Biostat. 6, Article 18 (2010)Google Scholar
  6. S.R. Cole, M.A. Hernan, J.M. Robins, K. Anastos, J. Chmiel, R. Detels, C. Ervin, J. Feldman, R. Greenblatt, L. Kingsley, S. Lai, M. Young, M. Cohen, A. Munoz, Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models. Am. J. Epidemiol. 158(7), 687–694 (2003)CrossRefGoogle Scholar
  7. W. Duckworth, C. Abraira, T. Moritz, D. Reda, N. Emanuele, P.D. Reaven, F.J. Zieve, J. Marks, S.N. Davis, R. Hayward, S.R. Warren, S. Goldman, M. McCarren, M.E. Vitek, W.G. Henderson, G.D. Huang for the VADT Investigators, Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360, 129–39 (2009a)Google Scholar
  8. W. Duckworth et al., Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360(2), 129–139 (2009b)CrossRefGoogle Scholar
  9. H.C. Gerstein et al., Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358(24), 2545–2559 (2008)CrossRefGoogle Scholar
  10. M.A. Hernan, B.A. Brumback, J.M. Robins, Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures. Stat. Med. 21, 1689–1709 (2002)CrossRefGoogle Scholar
  11. M.A. Hernan, B. Brumback, J.M. Robins, Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 11(5), 561–570 (2000)CrossRefGoogle Scholar
  12. M.A. Hernan, E. Lanoy, D. Costagliola, J.M. Robins, Comparison of dynamic treatment regimes via inverse probability weighting. Basic Clin. Pharmacol. 98, 237–242 (2006)CrossRefGoogle Scholar
  13. R.R. Holman, S.K. Paul, M.A. Bethel, D.R. Matthews, H.A. Neil, 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–89 (2008)CrossRefGoogle Scholar
  14. F. Ismail-Beigi, T. Craven, M.A. Banerji, J. Basile, J. Calles, R.M. Cohen, R. Cuddihy, W.C Cushman, S. Genuth, R.H. Grimm, B.P. Hamilton, B. Hoogwerf, D. Karl, L. Katz, A. Krikorian, P. O’Connor, R. Pop-Busui, U. Schubart, D. Simmons, H. Taylor, A. Thomas, D. Weiss, I. Hramiak for the ACCORD trial group, Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 376, 419–430 (2010)Google Scholar
  15. S.A. Murphy, M.J. van der Laan, J.M. Robins, Marginal mean models for dynamic treatment regimens. J. Am. Stat. Assoc. 96, 1410–1424 (2001)CrossRefzbMATHGoogle Scholar
  16. D.M. Nathan, J.B. Buse, M.B. Davidson, E. Ferrannini, R.R. Holman, R. Sherwin, B. Zinman, Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diab. Care 32(1), 193–203 (2009)CrossRefGoogle Scholar
  17. D.M. Nathan, P. A. Cleary, J.Y. Backlund, S.M. Genuth, J.M. Lachin, T.J. Orchard, P. Raskin, B. Zinman, Diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study research group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 22(353), 2643–2653 (2005)Google Scholar
  18. D.M. Nathan, J.B. Buse, M.B. Davidson, R.J. Heine, R.R. Holman, R. Sherwin, B. Zinman, Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diab. Care 29, 1963–1972 (2006)CrossRefGoogle Scholar
  19. NCEP (2002), Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection (2002)Google Scholar
  20. R. Neugebauer, J. Bullard, DSA: data-adaptive estimation with cross-validation and the D/S/A algorithm (2010).
  21. R. Neugebauer, M.J. van der Laan, Nonparametric causal effects based on marginal structural models. J. Stat. Plann. Infererence 137(2), 419–434 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. R. Neugebauer, M.J. Silverberg, M.J. van der Laan, Observational study and individualized antiretroviral therapy initiation rules for reducing cancer incidence in HIV-infected patients, chap. 26 (Springer, New York, 2011), pp. 436–456Google Scholar
  23. R. Neugebauer, B. Fireman, J.A. Roy, P.J. O’Connor, J.V. Selby, Dynamic marginal structural modeling to evaluate the comparative effectiveness of more or less aggressive treatment intensification strategies in adults with type 2 diabetes. Pharmacoepidemiol. Drug Saf. 21(Suppl. 2), 99–113 (2012)CrossRefGoogle Scholar
  24. R. Neugebauer, B. Fireman, J.A. Roy, P.J. O’Connor, Impact of specific glucose-control strategies on microvascular and macrovascular outcomes in 58,000 adults with type 2 diabetes. Diab. Care 36(11), 3510–3516 (2013)CrossRefGoogle Scholar
  25. R. Neugebauer, J. Schmittdiel, M.J. Laan, Targeted learning in real-world comparative effectiveness research with time-varying interventions. Stat. Med. 33(14), 2480–2520 (2014a)MathSciNetCrossRefGoogle Scholar
  26. R. Neugebauer, J.A. Schmittdiel, Z. Zhu, J.A. Rassen, J.D. Seeger, S. Schneeweiss, High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions. Stat. Med. 34(5), 753–781 (2014b)MathSciNetCrossRefGoogle Scholar
  27. R. Neugebauer, J.A. Schmittdiel, M.J. van der Laan, A case study of the impact of data-adaptive versus model-based estimation of the propensity scores on causal inferences from three inverse probability weighting estimators. Int. J. Biostat. 12(1), 131–155 (2016)MathSciNetCrossRefGoogle Scholar
  28. J. Neyman, Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes (In Polish). English translation by D.M. Dabrowska and T.P. Speed (1990). Stat. Sci. 5, 465–480 (1923)Google Scholar
  29. P.J. O’Connor, F. Ismail-Beigi, Near-normalization of glucose and microvascular diabetes complications: data from ACCORD and ADVANCE. Ther. Adv. Endocrinol. Metab. 2(1), 17–26 (2011)CrossRefGoogle Scholar
  30. A. Patel, S. MacMahon, J. Chalmers, B. Neal, L. Billot, M. Woodward, M. Marre, M. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358(24), 2560–2572 (2008)CrossRefGoogle Scholar
  31. J. Pearl, Causal diagrams for empirical research. Biometrika 82, 669–710 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  32. J. Pearl, Causality: Models, Reasoning, and Inference, 2nd edn. (Cambridge, New York, 2009a)CrossRefzbMATHGoogle Scholar
  33. J. Pearl, On the consistency rule in causal inference: axiom, definition, assumption, or theorem? Epidemiology 21(6), 872–875 (2010)CrossRefGoogle Scholar
  34. R.W. Platt, E.F. Schisterman, S.R. Cole, Time-modified confounding. Am. J. Epidemiol. 170(6), 687–694 (2009)CrossRefGoogle Scholar
  35. E.C. Polley, M.J. van der Laan, SuperLearner: super learner prediction (2013).
  36. K.K. Ray, S.R. Seshasai, S. Wijesuriya, R. Sivakumaran, S. Nethercott, D. Preiss, S. Erqou, N. Sattar, Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 373, 1765–72 (2009)CrossRefGoogle Scholar
  37. J.M. Robins, Marginal structural models, in 1997 Proceedings of the American Statistical Association. Section on Bayesian Statistical Science, pp. 1–10 (1998)Google Scholar
  38. J.M. Robins, Association, causation and marginal structural models. Synthese 121, 151–179 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  39. J.M. Robins, M.A. Hernan, B. Brumback, Marginal structural models and causal inference in epidemiology. Epidemiology 11(5), 550–560 (2000)CrossRefGoogle Scholar
  40. J.M. Robins, L. Orellana, A. Rotnitzky, Estimation and extrapolation of optimal treatment and testing strategies. Stat. Med. 27, 4678–4721 (2008b)MathSciNetCrossRefGoogle Scholar
  41. D.B. Rubin, Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688–701 (1974)CrossRefGoogle Scholar
  42. S.E. Sinisi, M.J. van der Laan, Deletion/Substitution/Addition algorithm in learning with applications in genomics. Stat. Appl. Genet. Mol. 3(1), Article 18 (2004)Google Scholar
  43. J.S. Skyler, R. Bergenstal, R.O. Bonow, J. Buse, P. Deedwania, E.A.M. Gale, B.V. Howard, M.S. Kirkman, M. Kosiborod, P. Reaven, R.S. Sherwin, Intensive Glycemic Control and the prevention of cardiovascular events: implications of the accord, advance, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diab. Care 32, 187–92 (2009)CrossRefGoogle Scholar
  44. O.M. Stitelman, V. De Gruttola, M.J. van der Laan, A general implementation of TMLE for longitudinal data applied to causal inference in survival analysis. Int. J. Biostat. 8(1), 1–37 (2012)MathSciNetCrossRefGoogle Scholar
  45. The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–86 (1993)Google Scholar
  46. UK Prospective Diabetes Study (UKPDS) Group, Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998)Google Scholar
  47. M.J. van der Laan, Targeted estimation of nuisance parameters to obtain valid statistical inference. Int. J. Biostat. 10(1), 29–57 (2014b)MathSciNetGoogle Scholar
  48. M.J. van der Laan, S. Gruber, Targeted minimum loss based estimation of causal effects of multiple time point interventions. Int. J. Biostat. 8(1), Article 9 (2012)Google Scholar
  49. M.J. van der Laan, M.L. Petersen, Causal effect models for realistic individualized treatment and intention to treat rules. Int. J. Biostat. 3(1), Article 3 (2007)Google Scholar
  50. M.J. van der Laan, E.C. Polley, A.E. Hubbard, Super learner. Stat. Appl. Genet. Mol. 6(1), Article 25 (2007)Google Scholar
  51. T.M. Vogt, J. Elston-Lafata, D. Tolsma, S.M. Greene, The role of research in integrated healthcare systems: the HMO Research Network. Am. J. Manag. Care 10(9), 643–648 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Romain S. Neugebauer
    • 1
  • Julie A. Schmittdiel
    • 1
  • Patrick J. O’Connor
    • 2
  • Mark J. van der Laan
    • 3
  1. 1.Kaiser Permanente Division of ResearchOaklandUSA
  2. 2.HealthPartners InstituteBloomingtonUSA
  3. 3.Division of Biostatistics and Department of StatisticsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations