C-TMLE for Continuous Tuning

  • Mark J. van der Laan
  • Antoine Chambaz
  • Cheng Ju
Part of the Springer Series in Statistics book series (SSS)


A TMLE of a causal quantity of interest first constructs an initial estimator of the relevant part of the likelihood of the data and then updates this initial estimator along a least favorable parametric model that uses the initial estimator as an off-set. The least favorable parametric model typically depends on an orthogonal nuisance parameter such as the treatment and censoring mechanism. This nuisance parameter is not needed to evaluate the target parameter, and, in fact, is orthogonal to the target parameter in the sense that a maximum likelihood estimator would completely ignore this nuisance parameter, or, at least, its scores are orthogonal to the scores of the relevant part of the likelihood.


  1. S. Gruber, M.J. van der Laan, A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. Int. J. Biostat. 6(1), Article 26 (2010b)Google Scholar
  2. M.E. Schnitzer, J. Lok, S. Gruber, Variable selection for confounder control, flexible modeling and collaborative targeted minimum loss-based estimation in causal inference. Int. J. Biostat. 12(1), 97–115 (2016)MathSciNetCrossRefGoogle Scholar
  3. M.J. van der Laan, Targeted estimation of nuisance parameters to obtain valid statistical inference. Int. J. Biostat. 10(1), 29–57 (2014b)Google Scholar
  4. M.J. van der Laan, S. Gruber, Collaborative double robust penalized targeted maximum likelihood estimation. Int. J. Biostat. 6(1), Article 17 (2010)Google Scholar
  5. M.J. van der Laan, S. Rose, Targeted Learning: Causal Inference for Observational and Experimental Data (Springer, Berlin, Heidelberg, New York, 2011)CrossRefGoogle Scholar
  6. H. Wang, S. Rose, M.J. van der Laan, Finding quantitative trait loci genes with collaborative targeted maximum likelihood learning. Stat. Probab. Lett. 81(7), 792–796 (2011a)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark J. van der Laan
    • 1
  • Antoine Chambaz
    • 2
  • Cheng Ju
    • 3
  1. 1.Division of Biostatistics and Department of StatisticsUniversity of California, BerkeleyBerkeleyUSA
  2. 2.MAP5 (UMR CNRS 8145), Université Paris DescartesParis cedex 06France
  3. 3.Division of BiostatisticsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations