Skip to main content

Stretchable sEMG Electrodes Conformally Laminated on Skin for Continuous Electrophysiological Monitoring

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10464))

Included in the following conference series:

Abstract

Current electrophysiological monitoring is based on invasive electrodes or surface electrodes. Here, a surface electromyography (sEMG) electrode with self-similar serpentine configuration is designed to monitor biological signal. Such electrode can bear rather large deformation (such asĀ >30%) under an appropriate areal coverage. And the electrode conformally attached on the skin surface via van del Waal interaction could furthest reduce the motion artifacts from the motion of skin. The capacitive electrodes that isolates the electrodes from the body also provide an effective way to minimize the leakage current. The sEMG electrodes have been used to record physiological signals from different parts of the body with sharp curvature, such as index finger, back neck and face, and they exhibit great potential in application of human-machine interface in the fields of robots and healthcare. Integrating wireless data transmission capabilities into the wearable sEMG electrodes would be studied in future for intelligent could healthcare platform.

W. Dong and C. Zhu contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, Y., Yu, X.B.: Capacitive biopotential measurement for electrophysiological signal acquisition: a review. IEEE Sens. J. 16(9), 2832ā€“2853 (2016)

    ArticleĀ  Google ScholarĀ 

  2. Lopez, A., Richardson, P.C.: Capacitive electrocardiographic and bioelectric electrodes. IEEE Trans. Biomed. Eng. 16(1), 99 (1969)

    ArticleĀ  Google ScholarĀ 

  3. Liao, L.D., et al.: Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors (Basel) 11(6), 5819ā€“5834 (2011)

    ArticleĀ  Google ScholarĀ 

  4. Al-Ajam, Y., et al.: The use of a bone-anchored device as a hard-wired conduit for transmitting EMG signals from implanted muscle electrodes. IEEE Trans. Biomed. Eng. 60(6), 1654ā€“1659 (2013)

    ArticleĀ  Google ScholarĀ 

  5. Jeong, J.W., et al.: Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839ā€“6846 (2013)

    ArticleĀ  Google ScholarĀ 

  6. Lim, S., et al.: Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 25(3), 375ā€“383 (2015)

    ArticleĀ  Google ScholarĀ 

  7. Xu, B., et al.: An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28(22), 4462ā€“4471 (2015)

    ArticleĀ  Google ScholarĀ 

  8. Pan, L., et al.: Improving myoelectric control for amputees through transcranial direct current stimulation. IEEE Trans. Biomed. Eng. 62(8), 1927ā€“1936 (2015)

    ArticleĀ  Google ScholarĀ 

  9. He, J., et al.: Invariant surface EMG feature against varying contraction level for myoelectric control based on muscle coordination. IEEE J. Biomed. Health Inf. 19(3), 874ā€“882 (2015)

    Google ScholarĀ 

  10. Mercer, J.A., et al.: EMG sensor location: does it influence the ability to detect differences in muscle contraction conditions? J. Electromyogr. Kinesiol. 16(2), 198ā€“204 (2006)

    ArticleĀ  Google ScholarĀ 

  11. Jeong, J.W., et al.: Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 3(5), 642ā€“648 (2014)

    ArticleĀ  Google ScholarĀ 

  12. Kim, D.H., et al.: Epidermal electronics. Science 333(6044), 838ā€“843 (2011)

    ArticleĀ  Google ScholarĀ 

  13. Kim, J., et al.: Next-generation flexible neural and cardiac electrode arrays. Biomed. Eng. Lett. 4(2), 95ā€“108 (2014)

    ArticleĀ  Google ScholarĀ 

  14. Huang, X., et al.: Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans. Biomed. Eng. 60(10), 2848ā€“2857 (2013)

    ArticleĀ  Google ScholarĀ 

  15. Hammock, M.L., et al.: 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997ā€“6038 (2013)

    ArticleĀ  Google ScholarĀ 

  16. Yeo, W.H., et al.: Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773ā€“2778 (2013)

    ArticleĀ  Google ScholarĀ 

  17. Viventi, J., et al.: A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Trans. Med. 2(24), 24ra22 (2010)

    ArticleĀ  Google ScholarĀ 

  18. Jang, K.I., et al.: Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6, 6566 (2015)

    ArticleĀ  Google ScholarĀ 

  19. Fan, J.A., et al.: Fractal design concepts for stretchable electronics. Nat. Commun. 5(2), 3266 (2014)

    Google ScholarĀ 

  20. Wang, L.-F., et al.: PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sens. J. 12(9), 2898ā€“2904 (2012)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgement

The authors acknowledge supports from the National Natural Science Foundation of China (51322507, 51635007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongAn Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dong, W., Zhu, C., Wang, Y., Xiao, L., Ye, D., Huang, Y. (2017). Stretchable sEMG Electrodes Conformally Laminated on Skin for Continuous Electrophysiological Monitoring. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics