Skip to main content

A Diagnostic Knowledge Model of Wind Turbine Fault

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Abstract

With the development of the wind power industry, wind power has become one of the main green generation energy. At the same time, with the wind power installed capacity increasing, the failure rate gradually growth. As wind turbine is a complex electromechanical equipment, the fault diagnosis for this kind of equipment is also a complicated process. Focused on the current shortage of fault diagnosis knowledge representation, this paper proposes a diagnostic knowledge model for wind turbine and also elaborates the model structure definition with a target to ensure the accuracy of fault diagnosis. Besides, this model can also offer assistance reference model for researchers in related fields to develop advanced methods for sharing and reuse of diagnostic knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Wind Energy Council: Wind in power 2016 European statistics, pp. 6–7 (2016)

    Google Scholar 

  2. Hatch, C.: Improved wind turbine condition monitoring using acceleration enveloping. Orbit 61, 58–61 (2004)

    Google Scholar 

  3. Kusiak, A., Li, W.: The prediction and diagnosis of wind turbine faults. Renew. Energy 36, 16–23 (2011)

    Article  Google Scholar 

  4. García Márquez, F., Tobias, A., Pinar Pérez, J., Papaelias, M.: Condition monitoring of wind turbines: techniques and methods. Renew. Energy 46, 169–178 (2012)

    Article  Google Scholar 

  5. Milborrow, D.: Operation and maintenance costs compared and revealed. Windstats Newslett. 19, 1–3 (2006)

    Google Scholar 

  6. Lau, B.C.P., Ma, E.W.M., Pecht, M.: Review of offshore wind turbine failures and fault prognostic methods. In: 2012 IEEE Conference on Prognostics and System Health Management (PHM), pp. 1–5. IEEE (2012)

    Google Scholar 

  7. Takoutsing, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T., Ekemb, G.: Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges. Energies 7, 2595–2630 (2014)

    Article  Google Scholar 

  8. Birolini, A.: Reliability Engineering, vol. 5. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  9. International Electrotechnical Commission. http://www.electropedia.org/. Accessed 21 Apr 2017

  10. Nie, M., Wang, L.: Review of condition monitoring and fault diagnosis technologies for wind turbine gearbox. Procedia CIRP 11, 287–290 (2013)

    Article  Google Scholar 

  11. Liu, W., Tang, B., Han, J., Lu, X., Hu, N., He, Z.: The structure healthy condition monitoring and fault diagnosis methods in wind turbines: a review. Renew. Sustain. Energy Rev. 44, 466–472 (2015)

    Article  Google Scholar 

  12. Amirat, Y., Benbouzid, M., Al-Ahmar, E., Bensaker, B., Turri, S.: A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renew. Sustain. Energy Rev. 13, 2629–2636 (2009)

    Article  Google Scholar 

  13. Kithil, R.: Case study of Lightning Damage to wind turbine blade. National Lighting Safety Institute (NLSI) (2008)

    Google Scholar 

  14. Yang, M., Chengbing, H., Xinxin, F.: Institutions function and failure statistic and analysis of wind turbine. Phys. Procedia 24, 25–30 (2012)

    Article  Google Scholar 

  15. Major failures in the wind turbine components and the importance of periodic inspections. http://www.windaction.org/posts/44617-major-failures-in-the-wind-turbine-components-and-the-importance-of-periodic-inspections#.WPlXF4jyvIU. Accessed 20 Apr 2017

  16. Purarjomandlangrudi, A., Nourbakhsh, G., Esmalifalak, M., Tan, A.: Fault detection in wind turbine: a systematic literature review. Wind Eng. 37, 535–548 (2013)

    Article  Google Scholar 

  17. Babu, J.R., Jithesh, S.V.: Breakdown risks in wind energy turbines. Pravartak J. Insur. Risk Manag. National Insur. Acad. Pun 3(3) (2008)

    Google Scholar 

  18. The Confederation of Fire Protection Association CFP A Europe.: Wind turbines fire protection guideline (2010)

    Google Scholar 

  19. Benbouzid, M.: Bibliography on induction motors faults detection and diagnosis. IEEE Trans. Energy Convers. 14, 1065–1074 (1999)

    Article  Google Scholar 

  20. Ghaedi, A., Abbaspour, A., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems. IEEE Trans. Sustain. Energy 5, 55–63 (2014)

    Article  Google Scholar 

  21. Stubkier, S., Dyrbye, E.: AVN energy designs a new hydraulic yaw system and reduces the fatigue loads of the wind turbine. Mod. Energy Rev. 3(2), 45 (2011)

    Google Scholar 

  22. Chen, R., Zhou, Z., Liu, Q., Pham, D.T., Zhao, Y., Yan, J., Wei, Q.: Knowledge modeling of fault diagnosis for rotating machinery based on ontology. In: 2015 International Conference on Industrial Informatics (INDIN), pp. 1050–1055. IEEE (2015)

    Google Scholar 

  23. Jeffries, W.Q., Chambers, J.A., Infield, D.G.: Experience with bicoherence of electrical power for condition monitoring of wind turbine blades. IEE Proc.-Vis. Image Sig. Process. 145(3), 141–148 (1998)

    Article  Google Scholar 

  24. Jasiūnienė, E., Raišutis, R., Šliteris, R., Voleišis, A., Jakas, M.: Ultrasonic NDT of wind turbine blades using contact pulse-echo immersion testing with moving water container. Ultragarsas “Ultrasound” 63(3), 28–32 (2016)

    Google Scholar 

  25. Liu, W., Tang, B., Jiang, Y.: Status and problems of wind turbine structural health monitoring techniques in China. Renew. Energy 35, 1414–1418 (2010)

    Article  Google Scholar 

  26. Benbouzid, M.E.H., Kliman, G.B.: What stator current processing-based technique to use for induction motor rotor faults diagnosis? IEEE Trans. Energy Convers. 18(2), 238–244 (2003)

    Article  Google Scholar 

  27. Benbouzid, M.E.H.: A review of induction motors signature analysis as a medium for faults detection. IEEE Trans. Industr. Electron. 47(5), 984–993 (2000)

    Article  Google Scholar 

  28. Wilkinson, M.R., Spinato, F., Tavner, P.J.: Condition monitoring of generators & other subassemblies in wind turbine drive trains. In: IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, pp. 388–392. IEEE (2007)

    Google Scholar 

  29. Yang, W., Tavner, P.J., Crabtree, C.J., Wilkinson, M.: Research on a simple, cheap but globally effective condition monitoring technique for wind turbines. In: 2008 18th International Conference on Electrical Machines, ICEM 2008, pp. 1–5. IEEE (2008)

    Google Scholar 

  30. Kim, K.: Parlos, A.: Induction motor fault diagnosis based on neuropredictors and wavelet signal processing. IEEE/ASME Trans. Mechatron. 7, 201–219 (2002)

    Article  Google Scholar 

  31. Ahadi, A.: Wind turbine fault diagnosis techniques and related algorithms. Int. J. Renew. Energy Res. (IJRER) 6(1), 80–89 (2016)

    Google Scholar 

  32. Zhang, Z., Verma, A., Kusiak, A.: Fault analysis and condition monitoring of the wind turbine gearbox. IEEE Trans. Energy Convers. 27, 526–535 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, H., Liu, W., Liu, Z. (2017). A Diagnostic Knowledge Model of Wind Turbine Fault. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10464. Springer, Cham. https://doi.org/10.1007/978-3-319-65298-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65298-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65297-9

  • Online ISBN: 978-3-319-65298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics