Skip to main content

Improved Hybrid Navigation for Space Transportation

  • Conference paper
  • First Online:
Book cover Advances in Aerospace Guidance, Navigation and Control

Abstract

This work presents a tightly coupled hybrid navigation system for space transportation applications. The tightly integrated set-up, selected for its robustness and design flexibility, is here updated with GPS Pseudoranges and Time-Differenced GPS Carrier Phases (TDCP) to promote fast-dynamics estimation. The receiver clock errors affecting both observables are analysed and modelled. Tropospheric delay-rate is found to cause major disturbance to the TDCP during atmospheric ascent. A robust correction scheme for this effect is devised. Performance is evaluated using real GPS measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As it shall be seen, the state vector of the navigation filter described in Sect. 4 allows \(\varDelta \!\tau _{\mathrm {T},k}\) to be given only in terms of \({\mathbf x}_k\), needing not \({\mathbf x}_{k-1}\).

  2. 2.

    A priori and a posteriori estimates are denoted, respectively, by the index superscripts − and \(+\).

References

  1. Braun B, Markgraf M, Montenbruck O (2016) Performance analysis of IMU-augmented GNSS tracking systems for space launch vehicles. CEAS Space J 8(2):117–133

    Article  Google Scholar 

  2. Burke E, Rutkowski E, Rutkowski E (2008) Vehicle based independent tracking system (VBITS): a small, modular, avionics suite for responsive launch vehicle and satellite applications. In: 6th Responsive Space Conference

    Google Scholar 

  3. Dishel V, Mezhiritskiy E (2011) Principals of integrated Ins/GLONASS+GPS GNC systems for space launchers. Results Of Realized Missions And Future Prospects. In: 8th International ESA Conference on Guidance, Navigation & Control Systems

    Google Scholar 

  4. Farrell JA (2008) Aided Navigation - GPS with High Rate Sensors. McGraw-Hill, New York

    Google Scholar 

  5. Giannini M, Melara M, Roux C (2014) Alts localization system of vega launcher: Vv02 post-flight analysis & Gps issues for future hybrid navigation. In: 9th International ESA Conference on Guidance, Navigation & Control Systems

    Google Scholar 

  6. Gibbs B (2011) Advanced Kalman Filtering, Least-Squares and Modeling. Wiley, Hoboken

    Book  Google Scholar 

  7. Groves PD (2008) Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Artech House, Boston

    MATH  Google Scholar 

  8. Guochang X (2007) GPS Theory, Algorithms and Applications, 2nd edn. Springer, Berlin

    Google Scholar 

  9. Hauschild A, Markgraf M et al (2015) Results of the GNSS receiver experiment OCAM-G on Ariane-5 flight VA 219. In: 6th European Conference for Aeronautics and Space Sciences

    Google Scholar 

  10. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS - Global Navigation Satellite Systems. Springer, Wien

    Google Scholar 

  11. Markgraf M, Montenbruck O (2005) Phoenix-HD - a miniature GPS tracking system for scientific and commercial rocket launches. In: 6th International Symposium on Launcher Technologies

    Google Scholar 

  12. McKern RA (1968) A Study of Transformation Algorithms for Use in a Digital Computer. MA thesis. University of Illinois

    Google Scholar 

  13. Montenbruck O, Markgraf M (2004) Global positioning system sensor with instantaneous- impact-point prediction for sounding rockets. J Spacecr Rocket 41:644–650

    Article  Google Scholar 

  14. NATO Standardization Agreement (STANAG) (1993) Doc. 4294, Edition 1. NATO

    Google Scholar 

  15. Parkinson BW, Spilker JJ Jr (1996) Global Positioning System: Theory and Applications, Vol. I. AIAA, Washington

    Book  Google Scholar 

  16. Polle B, Frapard B et al (2008) Robust INS/GPS hybrid navigator demonstrator design for launch, re-entry and orbital vehicles. In: 7th International ESA Conference on Guidance, Navigation and Control Systems

    Google Scholar 

  17. Schlotterer M (2008) Navigation system for reusable launch vehicle. In: 31st Annual AAS Guidance and Control Conference

    Google Scholar 

  18. Slivinsky S, Nesbit C et al (2002) Development and demonstration of a ballistic missile range safety technology system. J Inst Navig 49:91–102

    Article  Google Scholar 

  19. Steffes SR (2012) Real-time navigation algorithm for the SHEFEX2 hybrid navigation system experiment. In: AIAA Guidance, Navigation, and Control Conference

    Google Scholar 

  20. Steffes SR (2013) Development and Analysis of SHEFEX-2 Hybrid Navigation System Experiment. Ph.D. thesis. University of Bremen

    Google Scholar 

  21. Steffes SR (2014) Computationally distributed real-time dual rate Kalman filter. J Guid Control Dyn 37:1064–1068

    Article  Google Scholar 

  22. Steffes SR, Theil S, Samaan MA (2014) Post-mission analysis of flight results from the SHEFEX2 hybrid navigation system. In: 9th International ESA Conference on Guidance, Navigation & Control Systems

    Google Scholar 

  23. Theil S, Steffes SR et al (2009) Hybrid navigation system for spaceplanes, launch and re- entry vehicles. In: 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference

    Google Scholar 

  24. van Dierendonck AJ, McGraw JB, Brown RG (1984) Relationship between Allan variances and Kalman filter parameters. In: 16th Annual PTTI Meeting

    Google Scholar 

  25. van Graas F, Soloviev A (2004) Precise velocity estimation using a stand-alone GPS receiver. J Inst Navig 51:283–292

    Article  Google Scholar 

  26. Wendel J, Trommer GF (2004) Tightly coupled GPS/INS integration for missile applications. Aerosp Sci Technol 8:627–634

    Article  Google Scholar 

  27. Wendel J, Schaile C, Trommer GF (2001) Direct Kalman filtering of GPS/INS for aerospace applications. In: International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation

    Google Scholar 

  28. Williams A, Villa M, Puig-Suari J (2014) Platform independent launch vehicle avionics. In: 28th Annual AIAA/USU Conference on Small Satellites

    Google Scholar 

  29. Willms B (1999) Space integrated GPS/INS (SIGI) navigation system for space shuttle. In: 18th Digital Avionics Systems Conference

    Google Scholar 

  30. Zhou J, Knedlik S, Loffeld O (2012) INS/GPS for high-dynamic UAV-based applications. Int J Navig Obs 2012:1–11

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ESA, Guidance, Navigation & Control Section at the European Space Research and Technology Centre for granting the funding, through the Network/Partnering Initiative contract 4000111837/14/NL/MH, which enabled this research. In addition, the authors would like to thank Oliver Montenbruck, Markus Markgraf and Benjamin Braun from the German Space Operations Center (DLR) for the support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme F. Trigo .

Editor information

Editors and Affiliations

Appendix

Appendix

Parkinson et al. [15] suggests the following coarse tropospheric delay model, which does not require in situ atmospheric measurements nor the use of look-up tables:

$$\begin{aligned} \displaystyle h_{\tau _\mathrm {T},i,k}\left( {\mathbf x}_k\right) = {\textstyle \frac{1}{c}}\,m(\mathrm {E} _{i,k})\varDelta (\mathrm {h} _{\mathsf {a},k})\;, \end{aligned}$$
(63)
$$\begin{aligned}&\text {with}&\displaystyle m(\mathrm {E} _{i,k})= \frac{1.0121}{\sin \mathrm {E} _{i,k}+0.0121}\;, \quad \varDelta (\mathrm {h} _{\mathsf {a},k})=2.4405\;e^{-0.133\times 10^{-3}\;\mathrm {h} _{\mathsf {a},k}}\;. \end{aligned}$$
(64)

The Zenit delay \(\varDelta \) is a function of the receiver antenna altitude \(\mathrm {h} _{\mathsf {a},k}\), and the mapping function m depends on the satellite apparent elevation \(\mathrm {E} _{i,k}\). c is the speed of light.

The sensitivity vector of this model to the error-state vector can be given as

$$\begin{aligned} \displaystyle {\mathbf h}_{\tau _\mathrm {T},i,k}=\frac{\partial h_{\tau _\mathrm {T},i,k}\left( {\mathbf x}_k\right) }{\partial \varvec{\delta } {\mathbf x}_k} = -{\textstyle \frac{1}{c}}\,m(\mathrm {E} _{i,k})\varDelta (\mathrm {h} _{\mathsf {a},k})\begin{bmatrix}0.133\times 10^{-3}\\ m(\mathrm {E} _{i,k})\end{bmatrix}^{\mathsf {T}}\begin{bmatrix}\frac{\partial \mathrm {h} _{\mathsf {a},k}}{\partial \varvec{\delta } \!{\mathbf x}_k}\\ \frac{\partial \sin {\mathrm {E} _{i,k}}}{\partial \varvec{\delta } \!{\mathbf x}_k}\end{bmatrix}\;, \end{aligned}$$
(65)
$$\begin{aligned}&\text {with}&\displaystyle \mathrm {h} _{\mathsf {a},k}=\left\| {\mathbf r}_{\mathsf {a},k}^E\right\| -\mathrm {R} _\oplus \;, \qquad \sin \mathrm {E} _{i,k} = \left( {\mathbf {e}}_{\mathsf {a},k}^E\right) ^{\mathsf {T}}{\mathbf {e}}_{\rho \!,i,k}^E\;, \end{aligned}$$
(66)

where \(\mathrm {R} _\oplus \) is the Earth radius, \({\mathbf r}_{\mathsf {a},k}^E\) is the receiver antenna position, \({\mathbf {e}}_{\mathsf {a},k}^E\) is the unit direction from the ECEF origin to the receiver antenna, and \({\mathbf {e}}_{\rho \!,i,k}^E\), as in (45), is the unit range vector. The non-null partial derivatives in (65) are then

$$\begin{aligned} \frac{\partial \sin {\mathrm {E} _{i,k}}}{\partial \varvec{\delta } {\mathbf r}_k^E}&= \frac{\hat{\mathbf {e}}_{\mathsf {a},k}^E}{\Vert \hat{\mathbf r}_{\mathsf {a},k}^E\Vert }^{\mathsf {T}}\bigl [\hat{\mathbf {e}}_{\rho \!,i,k}^E \times \bigr ]^2-\frac{\hat{\mathbf {e}}_{\rho \!,i,k}^E}{\hat{\rho }_{i,k}}^{\mathsf {T}}\bigl [\hat{\mathbf {e}}_{\mathsf {a},k}^E \times \bigr ]^2\;, \qquad \frac{\partial \mathrm {h} _{\mathsf {a},k}}{\partial \varvec{\delta } {\mathbf r}_k^E} = \left( \hat{\mathbf {e}}_{\mathsf {a},k}^E\right) ^{\mathsf {T}}\;,\end{aligned}$$
(67)
$$\begin{aligned} \frac{\partial \sin {\mathrm {E} _{i,k}}}{\partial \varvec{\delta } \varvec{\theta } _k^E}&= \frac{\partial \sin {\mathrm {E} _{i,k}}}{\partial \varvec{\delta } {\mathbf r}_k^E}\hat{\mathbf C}_{B_k}^{E_k}\bigl [{\mathbf {l}}_\mathsf {a}^B \times \bigr ]\;, \qquad \frac{\partial \mathrm {h} _{\mathsf {a},k}}{\partial \varvec{\delta } \varvec{\theta } _k^E} = \frac{\partial \mathrm {h} _{\mathsf {a},k}}{\partial \varvec{\delta } {\mathbf r}_k^E}\hat{\mathbf C}_{B_k}^{E_k}\bigl [{\mathbf {l}}_\mathsf {a}^B \times \bigr ]\;. \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trigo, G.F., Theil, S. (2018). Improved Hybrid Navigation for Space Transportation. In: Dołęga, B., Głębocki, R., Kordos, D., Żugaj, M. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-65283-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65283-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65282-5

  • Online ISBN: 978-3-319-65283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics