Skip to main content

Characterising Angular Accelerometer Calibration Setup Disturbance Using Box–Jenkins Method

  • Conference paper
  • First Online:
Advances in Aerospace Guidance, Navigation and Control

Abstract

Angular accelerometer models estimated from the frequency response data using the Box–Jenkins method, where the calibration measurement system disturbance is parametrised independently from the dynamics. The models are identified from the frequency response measurement series using two types of angular acceleration input reference. Delays between these two references with the sensor data are approximated using the cross-correlation. The measurement data treated as a multi-channels series, which resulted in the concatenated model. The results demonstrate that the model with angular acceleration estimate as the input yields a higher degree model compared to the model with angular acceleration command as the input. The simpler model structure is possible by considering lower order models at the comparative Akaike Information Criterion value range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ncss.com/software/ncss/time-series-and-forecasting-in-ncss/#ARIMA.

  2. 2.

    http://nl.mathworks.com/help/econ/box-jenkins-methodology.html, accessed on April 2016.

References

  1. Bacon BJ, Ostroff AJ (2000) Reconfigurable flight control using nonlinear dynamic inversion with a special accelerometer implementation. In: Proceedings of the AIAA guidance, navigation and control conference and exhibit. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  2. Sieberling S, Chu QP, Mulder JA (2010) Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. J Guid Control Dyn 33(6):1732–1742

    Article  Google Scholar 

  3. Jatiningrum D, de Visser CC, van Paassen MM, Mulder M (2016) Modelling an angular accelerometer using frequency response measurement. In: Proceedings of the AIAA guidance, navigation and control conference. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  4. Lv P, Liu J, Lai J, Zhang L (2014) Decrease in accuracy of a rotational SINS caused by its rotary table’s errors. Int J Adv Robot Syst 11(74). https://doi.org/10.5772/58579

  5. Savage PG (2002) Analytical modeling of sensor quantization in strapdown inertial navigation error equations. J Guid Control Dyn 25(5):833–842

    Article  Google Scholar 

  6. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control, 5th edn. John Wiley & Sons, Inc., Hoboken, New Jersey

    Google Scholar 

  7. Ljung L (1999) System identification: theory for the user. Prentice Hall, Upper Saddle River

    Book  MATH  Google Scholar 

  8. Pintelon R, Schoukens J (2006) Box-Jenkins identification revisited–part I: theory. Automatica 42:63–75

    Article  MathSciNet  MATH  Google Scholar 

  9. Pintelon R, Schoukens J (2006) Box-Jenkins identification revisited–II: applications. Automatica 42:77–84

    Article  MathSciNet  MATH  Google Scholar 

  10. Pintelon R, Schoukens J (2007) Box-Jenkins identification revisited–part III: multivariable systems. Automatica 43:868–875

    Article  MathSciNet  MATH  Google Scholar 

  11. Jatiningrum D, de Visser CC, van Paassen MM, Mulder M (2015) A framework for calibrating angular accelerometers using a motion simulator. In: Proceedings of the AIAA modeling and simulation technologies conference. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  12. van den Bosch PPJ, van der Klauw AC (1994) Modeling, identification and simulation of dynamical systems. CRC Press Inc, Boca Raton

    MATH  Google Scholar 

  13. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  MathSciNet  MATH  Google Scholar 

  14. Nise NS (2011) Control systems engineering. Wiley, Boca Raton

    Google Scholar 

  15. Pratt RW (2000) Flight control systems - practical issues in design and implementation. Institution of Engineering and Technology, Stevenage

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jatiningrum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jatiningrum, D., de Visser, C.C., van Paassen, M.M., van Kampen, E., Mulder, M. (2018). Characterising Angular Accelerometer Calibration Setup Disturbance Using Box–Jenkins Method. In: Dołęga, B., Głębocki, R., Kordos, D., Żugaj, M. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-65283-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65283-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65282-5

  • Online ISBN: 978-3-319-65283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics