Skip to main content

Helicopter Pilot Model for Pitch Attitude Tracking Task

  • Conference paper
  • First Online:
Advances in Aerospace Guidance, Navigation and Control

Abstract

A helicopter pilot model as a part of the pilot-vehicle system is analyzed for the task of pitch attitude tracking in forward flight. Analytical helicopter pilot model, following the Efremov’s modification of the structural model, is defined through the optimization algorithm based on the minimum of the error variance. A set of the pilot-in-the-loop experiments were conducted at the research helicopter flight simulator with a fixed base and high fidelity visual system. In these experiments pilots were given different pitch commands visually at the primary flight display and the helicopter’s resulting pitch attitude was recorded. These results from the flight simulator experiments were used for the comparison with the results of the pilot-vehicle system with the defined analytical pilot model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anon (1997) Flying qualities of piloted aircraft. Technical report MIL-HDBK-1797B, U.S. Department of Defense

    Google Scholar 

  2. Anon (2000) Aeronautical design standard performance specification, handling qualities requirements for military rotorcraft. Technical report ADS-33E-PRF, United States Army Aviation and Missile Command Engineering Directorate, Redstone Arsenal, AL, USA

    Google Scholar 

  3. Dietz M, Maucher C, Schimke D (2010) Addressing today’s aeromechanic questions by industrial answers. In: American helicopter society specialists’ conference on aeromechanics. San Francisco

    Google Scholar 

  4. Dillow JD (1971) The ‘paper-pilot’-a digital computer program to predict pilot rating for the hover task. Technical report, DTIC Document

    Google Scholar 

  5. Efremov A, Tjaglik M (2011) The development of perspective displays for highly precise tracking tasks. Advances in aerospace guidance, navigation and control. Springer, Berlin, pp 163–174

    Google Scholar 

  6. Efremov AV, Ogloblin AV (2006) Progress in pilot-in-the loop investigations for flying qualities prediction and evaluation. In: 25th international congress of the aeronautical sciences - ICAS2006

    Google Scholar 

  7. Efremov AV, Alexandrov VV, Koshelenko AV, Tjaglik MS, Tzyan TV (2010) Development of pilot modeling and its application to manual control tasks. In: 27th international congress of the aeronautical sciences - ICAS2010

    Google Scholar 

  8. Heffley R (2001) Application of classical-control techniques for computer modeling and simulation of helicopter pilotage tasks. In: 57th annual forum of American helicopter society

    Google Scholar 

  9. Heffley RK, Jewell WF, Lehman JM, Van Winkle RA (1979) A compilation and analysis of helicopter handling qualities data. NASA Contract Rep 3144:375

    Google Scholar 

  10. Hess RA (1980) Structural model of the adaptive human pilot. J Guid Control Dyn 3(5):416–423

    Article  MATH  Google Scholar 

  11. Hess RA (1982) Prediction of aircraft handling qualities using analytical models of the human pilot. Technical report TR-84233, NASA

    Google Scholar 

  12. Hess RA (1989) Theory for aircraft handling qualities based upon a structural pilot model. J Guid Control Dyn 12(6):792–797

    Article  Google Scholar 

  13. Hess RA (2006) Simplified approach for modelling pilot pursuit control behaviour in multi-loop flight control tasks. Proc Inst Mech Eng Part G: J Aerosp Eng 220(2):85–102

    Article  Google Scholar 

  14. Hess RA (2008) Obtaining multi-loop pursuit-control pilot models from computer simulation. Proc Inst Mech Eng Part G: J Aerosp Eng 222(G2):189–199

    Article  Google Scholar 

  15. Hess RA (2009) Analytical assessment of performance, handling qualities, and added dynamics in rotorcraft flight control. IEEE Trans Syst Man Cybern Part A: Syst Hum 39(1):262–271

    Article  Google Scholar 

  16. Hess RA (2016) Modeling human pilot adaptation to flight control anomalies and changing task demands. J Guid Control Dyn 39(3):655–666

    Article  Google Scholar 

  17. Hess RA, Chan K (1988) Preview control pilot model for near-earth maneuvering helicopter flight. J Guid Control Dyn 11(2):146–152

    Article  Google Scholar 

  18. Hess RA, Gorder PJ (1990) Design and evaluation of a cockpit display for hovering flight. J Guid Control Dyn 13(3):450–457

    Article  Google Scholar 

  19. Hess RA, Siwakosit W (2001) Assessment of flight simulator fidelity in multiaxis tasks including visual cue quality. J Aircr 38(4):607–614

    Article  Google Scholar 

  20. Hess RA, Watson DC (1986) Cross coupling in pilot-vehicle systems. J Guid Control Dyn 9(6):614–620

    Article  Google Scholar 

  21. Hess RA, Zeyada Y, Heffley RK (2002) Modeling and simulation for helicopter task analysis. J Am Helicopter Soc 47(4):243–252

    Article  Google Scholar 

  22. Johnson W (2012) A history of rotorcraft comprehensive analyses. Technical report TP-2012-216012, NASA

    Google Scholar 

  23. Lone M, Cooke A (2014) Review of pilot models used in aircraft flight dynamics. Aerosp Sci Technol 34:55–74

    Article  Google Scholar 

  24. McRuer D, Jex H (1967) A review of quasi-linear pilot models. IEEE Trans Hum Factors Electron HFE-8(3):231–249

    Google Scholar 

  25. McRuer D, Graham D, Krendel E (1965) Human pilot dynamics in compensatory systems: theory, models and experiments with controlled element and forcing function variations. Technical report AFFDL-TR-65-15, Air Force Flight Dynamics Laboratory

    Google Scholar 

  26. Miller DP, Vinje EW (1968) Fixed-base flight simulator studies of VTOL aircraft handling qualities in hovering and low-speed flight. No. 67-152 in AFFDL-TR. Defense Technical Information Center

    Google Scholar 

  27. Ockier CJ (1998) Evaluation of the ADS-33D handling qualities criteria using the Bo 105 helicopter. DLR, Dt. Zentrum für Luft-und Raumfahrt e. V., Abt. Unternehmensorganisation und-information

    Google Scholar 

  28. Padfield GD (2007) Helicopter flight dynamics. Blackwell Publishing, Oxford

    Book  Google Scholar 

  29. Perhinschi MG (1998) A study of helicopter handling qualities in turbulence using a human pilot structural model. In: AIAA-4148, atmospheric flight mechanics conference, Boston

    Google Scholar 

  30. Schuck F (2014) Ein integriertes auslegungskonzept zur sicherstellung exzellenter handling qualities für kleinflugzeuge. Ph.D. thesis, München, Technische Universität München, Dissertation

    Google Scholar 

  31. Viertler F, Hajek M (2015) Requirements and design challenges in rotorcraft flight simulations for research applications. In: Proceedings of AIAA SciTech-modeling and simulation technologies conference

    Google Scholar 

  32. Vorst J (2001) A pilot model for helicopter manoeuvres. Technical report NLR-TP-98448, National Aerospace Laboratory NLR

    Google Scholar 

  33. Yilmaz D, Jump M, Linghai L, Jones M (2011) State-of-the-art pilot model for RPC prediction report. Technical report ACPO-GA-2010-266073 D2.3, TU Delft

    Google Scholar 

  34. Yilmaz D, Pavel M, Jones M, Jump M, Lu L (2012) Identification of pilot control behavior during possible rotorcraft pilot coupling events. In: Proceedings of 38th European rotorcraft forum. Amsterdam

    Google Scholar 

  35. Zeyada Y, Hess RA (2000) Modeling human pilot cue utilization with applications to simulator fidelity assessment. J Aircr 37(4):588–597

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Deutscher Akademischer Austauschdienst – DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Vrdoljak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vrdoljak, M., Viertler, F., Hajek, M., Heller, M. (2018). Helicopter Pilot Model for Pitch Attitude Tracking Task. In: Dołęga, B., Głębocki, R., Kordos, D., Żugaj, M. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-65283-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65283-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65282-5

  • Online ISBN: 978-3-319-65283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics