Skip to main content

Distributed Feedback Raman and Brillouin Fiber Lasers

  • Chapter
  • First Online:
Raman Fiber Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 207))

Abstract

Distributed feedback Raman and Brillouin lasers use intrinsic gain mechanisms in optical waveguides to produce compact, narrow-linewidth sources in arbitrary spectral bands determined only by the available pump wavelengths. In this chapter, we begin with a theoretical description of Raman DFB lasers. We show how they can be modeled using a set of nonlinear coupled-mode equations. In agreement with a closed-form approximation to the threshold gain, time domain simulations reveal the dependence of threshold and slope efficiency on cavity parameters such as gain, loss, specifics of the grating profile, and nonlinear effects such as two photon absorption. We then review the realizations of narrow-linewidth Raman fiber lasers. We show how different pump schemes and cavities affect the performance and discuss possibilities for improvements. Finally, we describe the Brillouin DFB laser and compare its performance with that of a Raman DFB laser made with the same cavity.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-65277-1_8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kogelnik, H., Shank, C.V.: Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971)

    Article  ADS  Google Scholar 

  2. Shank, C.V., Bjorkholm, J.E., Kogelnik, H.: Tunable distributed-feedback dye laser. Appl. Phys. Lett. 18, 395–396 (1971)

    Article  ADS  Google Scholar 

  3. Kogelnik, H., Shank, C.V.: Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)

    Article  ADS  Google Scholar 

  4. Nakamura, M., Yariv, A., Yen, H.W., Somekh, S., Garvin, H.L.: Optically pumped GaAs surface laser with corrugation feedback. Appl. Phys. Lett. 22, 515–516 (1973)

    Article  ADS  Google Scholar 

  5. Scifres, P.R., Burnham, R.D., Streifer, W.: Distributed-feedback single heterojunction GaAs diode laser. Appl. Phys. Lett. 25, 203–206 (1974)

    Article  ADS  Google Scholar 

  6. Haus, H.A., Shank, C.V.: Antisymmetric taper of distributed feedback lasers. IEEE J. Quantum Electron. 12, 532–539 (1976)

    Article  ADS  Google Scholar 

  7. Utaka, K., Akiba, S., Sakai, K., Matsushima, Y.: λ/4-shifted InGaAsP/InP DFB lasers by simultaneous holographic exposure of positive and negative photoresists. Electron. Lett. 20, 1008–1010 (1984)

    Google Scholar 

  8. Meltz, G., Morey, W.W., Glenn, W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14(15), 823–825 (1989)

    Article  ADS  Google Scholar 

  9. Hill, K.O., Malo, B., Bilodeau, F., Johnson, D.C., Albert, J.: Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62, 1035–1037 (1993)

    Article  ADS  Google Scholar 

  10. Anderson, D.Z., Mizrahi, V., Erdogan, T., White, A.E.: Production of in-fibre gratings using a diffractive optical element. Electron. Lett. 29, 566–568 (1993)

    Article  Google Scholar 

  11. Asseh, A., Storøy, H., Sahlgren, B.E., Sandgren, S., Stubbe, R.A.H.: A writing technique for long fiber Bragg gratings with complex reflectivity profiles. J. Lightwave Technol. 15, 1419–1423 (1997)

    Article  ADS  Google Scholar 

  12. Loh, W.H., Cole, M.J., Zervas, M.N., Barcelos, S., Laming, R.I.: Complex grating structures with uniform phase masks based on the moving fiber-scanning technique. Opt. Lett. 20, 2051–2053 (1995)

    Article  ADS  Google Scholar 

  13. Kringlebotn, J.T., Archambault, J.-L., Reekie, L., Payne, D.N.: Er3+:Yb3+−codoped fiber distributed-feedback laser. Opt. Lett. 19, 2101–2103 (1994)

    Article  ADS  Google Scholar 

  14. Yelen, K., Zervas, M.N., Hickey, L.M.B.: Fiber DFB lasers with ultimate efficiency. J. Lightwave Technol. 23, 32–43 (2005)

    Article  ADS  Google Scholar 

  15. Grubb, S.G., Erdogan, T., Mizrahi, V., Strasser, T., Cheung, V.Y., Reed, W.A., Lemaire, P.J., Miller, A.E., Kosinski, S.G., Nykolak, G., Becker, P.C., Peckham, D.W.: 1.3 μm cascaded raman amplifier in germanosilicate fibers. Paper presented at optical amplifiers and their applications conference, PD3 1994

    Google Scholar 

  16. Perlin, V.E., Winful, H.G.: Distributed feedback fiber Raman laser. IEEE J. Quantum Electron. 37, 38 (2001)

    Article  ADS  Google Scholar 

  17. Perlin, V.E., Winful, H.G.: Stimulated Raman scattering in nonlinear periodic structures. Phys. Rev. A. 64, 043804 (2001)

    Article  ADS  Google Scholar 

  18. Hu, Y., Broderick, N.G.R.: Improved design of a DFB Raman fibre laser. Opt. Commun. 282, 3356–3359 (2009)

    Article  ADS  Google Scholar 

  19. Lauridsen, V.C., Povlsen, J.H., Varming, P.: Design of DFB fibre lasers. Electron. Lett. 34, 2028–2030 (1998)

    Article  Google Scholar 

  20. Shi, J., Ibsen, M.: Effects of phase and amplitude noise on π phase-shifted DFB Raman fibre lasers. Paper presented at bragg gratings, photosensitivity and poling in glass waveguides, JThA30, 2010

    Google Scholar 

  21. Kremp, T., Abedin, K.S., Westbrook, P.S.: Simulation of two-photon absorption in Raman DFB lasers. Paper presented at advanced photonics congress, OSA technical digest (Optical Society of America), paper BW3E.5, 2012

    Google Scholar 

  22. Westbrook, P.S., Abedin, K.S., Nicholson, J.W., Kremp, T., Porque, J.: Demonstration of a Raman fiber distributed feedback laser. Paper presented at CLEO, PDPA11, 2011

    Google Scholar 

  23. Westbrook, P.S., Abedin, K.S., Nicholson, J.W., Kremp, T., Porque, J.: Raman fiber distributed feedback lasers. Opt. Lett. 36, 2895–2897 (2011)

    Article  ADS  Google Scholar 

  24. Shi, J., Alam, S., Ibsen, M.: Highly efficient Raman distributed feedback fibre lasers. Opt. Express. 20, 5082–5091 (2012)

    Article  ADS  Google Scholar 

  25. Shi, J., Alam, S., Ibsen, M.: Sub-watt threshold, kilohertz-linewidth Raman distributed-feedback fiber laser. Opt. Lett. 37, 1544–1546 (2012)

    Article  ADS  Google Scholar 

  26. Siekiera, A., Engelbrecht, R., Nothofer, A., Schmauss, B.: Short 17-cm DBR Raman fiber laser with a narrow Spectrum. IEEE Photon. Technol. Lett. 24, 107–109 (2012)

    Article  ADS  Google Scholar 

  27. Siekiera, A., Engelbrecht, R., Nothofer, A., Schmauss, B.: Characterization of a narrowband Raman MOPA with short master oscillator. Paper presented at Fiber Lasers IX: Technology, systems, and applications, edited by Eric C. Honea, Sami T. Hendrow Proc. of SPIE 8237, 82371I (2012)

    Google Scholar 

  28. Abedin, K.S., Westbrook, P.S., Nicholson, J.W., Porque, J., Kremp, T., Liu, X.: Single-frequency Brillouin distributed feedback fiber laser. Opt. Lett. 37, 605–607 (2012)

    Article  ADS  Google Scholar 

  29. Snyder, A.S., Love, J.D.: Optical Waveguide Theory. Kluwer Academic Publishers Group, Boston (1983)

    Google Scholar 

  30. Kremp, T., Abedin, K.S., Westbrook, P.S.: Closed-form approximations to the threshold quantities of distributed-feedback lasers with varying phase shifts and positions. IEEE J. Quantum Electron. 49, 281–292 (2013)

    Article  ADS  Google Scholar 

  31. Kashyap, R.: Fiber Bragg Gratings. Academic Press, San Diego (1999)

    Google Scholar 

  32. Othonos, A., Kalli, K.: Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Artech House, Boston/London (1999)

    Google Scholar 

  33. Erdogan, T.: Fiber grating spectra. J. Lightwave Technol. 15, 1277–1294 (1997)

    Article  ADS  Google Scholar 

  34. Foster, S.: Spatial mode structure of the distributed feedback fiber laser. IEEE J. Quantum Electron. 40, 884–892 (2004)

    Article  ADS  Google Scholar 

  35. Løvseth, S.G., Rønnekleiv, E.: Fundamental and higher order mode thresholds of DFB fiber lasers. J. Lightwave Technol. 20, 494–501 (2002)

    Article  ADS  Google Scholar 

  36. McCall, S.L., Platzman, P.M.: An optimized π/2 distributed feedback laser. IEEE J. Quantum Electron. 21, 1899–1904 (1985)

    Article  ADS  Google Scholar 

  37. Barmenkow, Y.O., Kir’yanov, A.V., Perez-Millan, P., Cruz, J.L., Andres, M.V.: Threshold of a symmetrically pumped distributed feedback fiber laser with a variable phase shift. IEEE J. Quantum Electron. 44, 718–723 (2008)

    Article  ADS  Google Scholar 

  38. Tuniz, A., Brawley, G., Moss, D.J., Eggleton, B.J.: Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber. Opt. Express. 16, 18524–18534 (2008)

    Google Scholar 

  39. de Sterke, C.M., Jackson, K.R., Robert, B.D.: Nonlinear coupled mode equations on a finite interval: a numerical procedure. J. Opt. Soc. Am. B. 8, 403–412 (1991)

    Article  ADS  Google Scholar 

  40. Taha, T.R., Ablowitz, M.J.: Analytical and numerical spects of certain nonlinear evolution equations II. Numerical nonlinear Schrödinger equation. J. Comput. Phys. 55, 203–230 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Qin, G., Liao, M., Suzuki, T., Mori, A., Ohishi, Y.: Widely tunable ring-cavity tellurite fiber Raman laser. Opt. Lett. 33, 2014–2016 (2008)

    Article  ADS  Google Scholar 

  42. Nicholson, J.W., Yan, M.F., Wisk, P., Fleming, J., DiMarcello, F., Monberg, E., Taunay, T., Headley, C., DiGiovanni, D.J.: Raman fiber laser with 81 W output power at 1480 nm. Opt. Lett. 35, 3069–3071 (2010)

    Article  ADS  Google Scholar 

  43. Feng, Y., Taylor, L.R., Calia, D.B.: Multiwatts narrow linewidth fiber Raman amplifiers. Opt. Express. 16, 10927–10932 (2008)

    Article  ADS  Google Scholar 

  44. Feng, Y., Taylor, L.R., Calia, D.B.: 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star. Opt. Express. 17, 19021–19026 (2009)

    Article  ADS  Google Scholar 

  45. Stokes, L.F., Chodorow, M., Shaw, H.J.: All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold. Opt. Lett. 7, 509–511 (1982)

    Article  ADS  Google Scholar 

  46. Smith, S.P., Zarinetchi, F., Ezekiel, S.: Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393–395 (1991)

    Article  ADS  Google Scholar 

  47. Al-Mansoori, M.H., Kamil Abd-Rahman, M., Mahamd Adikan, F.R., Mahdi, M.A.: Widely tunable linear cavity multiwavelength Brillouin-erbium fiber lasers. Opt. Express. 13, 3471–3476 (2005)

    Article  ADS  Google Scholar 

  48. Loayssa, A., Benito, D., Garde, M.J.: Optical carrier-suppression technique with a Brillouin-erbium fiber laser. Opt. Lett. 25, 197–199 (2000)

    Article  ADS  Google Scholar 

  49. Norcia, S., Tonda-Goldstein, S., Dolfi, D., Huignard, J.-P.: Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals. Opt. Lett. 28, 1888–1890 (2003)

    Article  ADS  Google Scholar 

  50. Geng, J., Staines, S., Jiang, S.: Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency. Opt. Lett. 33, 16–18 (2008)

    Article  ADS  Google Scholar 

  51. Geng, J., Jiang, S.: Pump to-stokes transfer of relative intensity noise in Brillouin fiber ring lasers. Opt. Lett. 32, 11–13 (2007)

    Article  ADS  Google Scholar 

  52. Geng, J, Staines, S, Wang, Z., Zong, J., Blake, M., Jiang, S.: Actively stabilized Brillouin fiber laser with high output power and low noise. Paper presented at optical fiber communication conference, OThC4, 2006

    Google Scholar 

  53. Abedin, K.S.: Single-frequency Brillouin lasing using single-mode As2Se3 chalcogenide fiber. Opt. Express. 14, 4037–4042 (2006)

    Article  ADS  Google Scholar 

  54. Pant, R., Li, E., Choi, D.Y., Poulton, C.G., Madden, S.J., Luther-Davies, B., Eggleton, B.J.: Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder stokes generation. Opt. Lett. 36, 3687–3689 (2011)

    Article  ADS  Google Scholar 

  55. Kittlaus, E.A., Shin, H., Rakich, P.T.: Large Brillouin amplification in silicon. Nat. Photonics. 10, 463–468 (2016)

    Article  ADS  Google Scholar 

  56. Rokhsari, H., Vahala, K.J.: Observation of Kerr nonlinearity in microcavities at room temperature. Opt. Lett. 30, 427–429 (2005)

    Article  ADS  Google Scholar 

  57. Abedin, K.S., Westbrook, P.S., Kremp, T., Zhu, B., Nicholson, J.W., Porque, J., Liu, X.: Highly efficient distributed feedback Brillouin fiber laser. Paper presented at advanced photonics congress OSA Technical Digest paper BW3E.3, 2012

    Google Scholar 

  58. Loranger, S., Lambin-Iezzi, V., Wahbeh, M., Kashyap, R.: Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber. Opt. Lett. 41, 1797–1800 (2016)

    Article  ADS  Google Scholar 

  59. Winful, H.G., Kabakova, I.V., Eggleton, B.J.: Model for distributed feedback Brillouin lasers. Opt. Express. 21, 16191–16199 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Westbrook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Westbrook, P.S., Abedin, K.S., Kremp, T. (2017). Distributed Feedback Raman and Brillouin Fiber Lasers. In: Feng, Y. (eds) Raman Fiber Lasers. Springer Series in Optical Sciences, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-65277-1_6

Download citation

Publish with us

Policies and ethics