Skip to main content

Network Coding Bounds and Submodularity

  • Chapter
  • First Online:
  • 323 Accesses

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 14))

Abstract

This chapter applies the multicast models for wireless networks, in particular, the proposed generalized submodular cut model and the proposed penalized polymatroid broadcast model, to general outer bounds, inner bounds, and approximations of the multicast capacity regions of discrete memoryless networks. It focuses on the class of independent noise discrete memoryless networks, i.e., the outputs are independent given the inputs. Determining the multicast capacity region of discrete memoryless networks, which includes the capacity (region) of point-to-point communication, bidirectional communication, and multiple access communication in relay networks, has been a longstanding open problem. The multicast capacity region has only recently been determined for some special cases, namely, graphical networks, hypergraphical networks, deterministic linear finite field networks, networks of independent deterministic broadcast channels, and networks of independent erasure broadcast channels with erasure location side-information at the destinations. For general networks, one has to resort to studying inner and outer bounds on the multicast capacity region. The analysis in this chapter focuses on four multicast rate regions related to the multicast capacity region, namely, the cut-set outer bound, the independent input approximation of the cut-set outer bound, the noisy network coding inner bound, and the elementary hypergraph decomposition inner bound. The goal of this chapter is to identify conditions under which these bounds admit representations by means of multicast rate regions that are generated by submodular cut rate regions, polymatroid broadcast rate regions, or hyperarc rate regions. In particular, this chapter reveals an intricate relationship between submodularity and independent noise networks, based on the submodularity of the entropy function on sets of random variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that instead of defining the multi-message capacity region as a subset of \(\prod _{T\subset N}\mathscr {R}^N_+\), where \(r^T_a\) denotes the rate of node a for a multicast to T, we can equivalently define this capacity region as a hyperarc rate region \(\mathcal {G}\subset \mathscr {H}^N_+\) such that \(g_a(T)\) denotes the rate of source node a for a multicast to terminal set T. The transformation between both representations is done by appropriate reordering and grouping of the source rates into hyperarc rates and vice versa.

  2. 2.

    Incidentally, \(H(Y_A|Y_{A^{\mathsf {c}}}X_N)\) can be shown to be supermodular using the entropy chain rule and the submodularity of the entropy function.

  3. 3.

    The addition is with respect to the binary finite field, i.e., modulo two addition.

References

  1. El Gamal A, Kim YH (2011) Network information theory. Cambridge University Press

    Google Scholar 

  2. Kramer G (2008) Topics in multi-user information theory. Found Trends Commun Inf Theory 4(4–5):265–444

    Article  Google Scholar 

  3. Ahlswede R, Cai N, Li SYR, Yeung RW (2000) Network information flow. IEEE Trans Inf Theory 46(4):1204–1216

    Article  MathSciNet  MATH  Google Scholar 

  4. Lun D, Médard M, Kötter R, Effros M (2008) On coding for reliable communication over packet networks. Phys Commun 1(1):3–20

    Article  Google Scholar 

  5. Lun D, Ratnakar N, Médard Kötter R, Karger D, Ho T, Ahmed E, Zhao F (2006) Minimum-cost multicast over coded packet networks. IEEE Trans Inf Theory 52(6):2608–2623

    Article  MathSciNet  MATH  Google Scholar 

  6. Ho T, Lun D (2008) Network coding: an introduction. Cambridge University Press

    Google Scholar 

  7. Avestimehr A, Diggavi S, Tse D (2011) Wireless network information flow: a deterministic approach. IEEE Trans Inf Theory 57(4):1872–1905

    Article  MathSciNet  MATH  Google Scholar 

  8. Ratnakar N, Kramer G (2006) The multicast capacity of deterministic relay networks with no interference. IEEE Trans Inf Theory 52(6):2425–2432

    Article  MATH  Google Scholar 

  9. Dana A, Gowaikar R, Palanki R, Hassibi B, Effros M (2006) Capacity of wireless erasure networks. IEEE Trans Inf Theory 52(3):789–804

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujishige S (1978) Polymatroidal dependence structure of a set of random variables. Inf Control 39(1):55–72

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang Z, Yeung RW (1998) On characterization of entropy function via information inequalities. IEEE Trans Inf Theory 44(4):1440–1452

    Article  MathSciNet  MATH  Google Scholar 

  12. Cover T, El Gamal A (1979) Capacity theorems for the relay channel. IEEE Trans Inf Theory 25(5):572–584

    Article  MathSciNet  MATH  Google Scholar 

  13. El Gamal A (1981) On information flow in relay networks. In: IEEE national telecommunications conference, vol 2. New Orleans, LA, USA, pp D4.1.1–D4.1.4

    Google Scholar 

  14. Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  15. Parvaresh F, Etkin R (2014) Efficient capacity computation and power optimization for relay networks. IEEE Trans Inf Theory 60(3):1782–1792

    Article  MathSciNet  MATH  Google Scholar 

  16. Lim S, Kim YH, El Gamal A, Chung SY (2011) Noisy network coding. IEEE Trans Inf Theory 57(5):3132–3152

    Article  MathSciNet  MATH  Google Scholar 

  17. Yassaee M, Aref M (2011) Slepian-Wolf coding over cooperative relay networks. IEEE Trans Inf Theory 57(6):3462–3482

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu Y, Chou PA, Zhang Q, Jain K, Zhu W, Kung SY (2005b) Network planning in wireless ad hoc networks: a cross-layer approach. IEEE J Sel Areas Commun 23(1):136–150

    Article  Google Scholar 

  19. Wu Y, Chou P, Kung SY (2005a) Minimum-energy multicast in mobile ad hoc networks using network coding. IEEE Trans Commun 53(11):1906–1918

    Article  Google Scholar 

  20. Wu Y, Chiang M, Kung SY (2006) Distributed utility maximization for network coding based multicasting: a critical cut approach. In: International symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt), pp 1–6

    Google Scholar 

  21. Rajawat K, Gatsis N, Giannakis G (2011) Cross-layer designs in coded wireless fading networks with multicast. IEEE/ACM Trans Netw 19(5):1276–1289

    Article  Google Scholar 

  22. Cui T, Chen L, Ho T (2010) On distributed scheduling in wireless networks exploiting broadcast and network coding. IEEE Trans Commun 58(4):1223–1234

    Article  Google Scholar 

  23. Riemensberger M, Dotzler A, Utschick W (2009) Factorization for advanced physical layer techniques in network-coded wireless communication networks. In: Wireless network coding (WiNC), pp 1–6

    Google Scholar 

  24. Sagduyu YE, Ephremides A (2005) Joint scheduling and wireless network coding. In: Workshop on network coding, theory and applications (NetCod), Riva del Garda, Italy

    Google Scholar 

  25. Sagduyu YE, Ephremides A (2007) On joint MAC and network coding in wireless ad hoc networks. IEEE Trans Inf Theory 53(10):3697–3713

    Article  MathSciNet  MATH  Google Scholar 

  26. Ho T, Viswanathan H (2009) Dynamic algorithms for multicast with intra-session network coding. IEEE Trans Inf Theory 55(2):797–815

    Article  MathSciNet  MATH  Google Scholar 

  27. Dotzler A, Brehmer J, Utschick W (2009) Advanced physical layer techniques for wireless mesh networks with network coding. In: ITG workshop on smart antennas

    Google Scholar 

  28. Yuan J, Li Z, Yu W, Li B (2006) A cross-layer optimization framework for multihop multicast in wireless mesh networks. IEEE J Sel Areas Commun 24(11):2092–2103

    Article  Google Scholar 

  29. Xi Y, Yeh EM (2010) Distributed algorithms for minimum cost multicast with network coding. IEEE/ACM Trans Netw 18(2):379–392

    Article  Google Scholar 

  30. Zhao F, Médard M, Ozdaglar A, Lun D (2014) Convergence study of decentralized min-cost subgraph algorithms for multicast in coded networks. IEEE Trans Inf Theory 60(1):410–421

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhao F, Médard M, Lun D, Ozdaglar A (2009) Minimum cost subgraph algorithms for static and dynamic multicasts with network coding. In: Tarokh V (ed) New directions in wireless communications research, Springer, pp 317–349

    Google Scholar 

  32. Wan L, Luo J (2012) On the complexity of wireless multicast optimization. IEEE Wirel Commun Lett 1(6):593–596

    Article  Google Scholar 

  33. Wan L, Luo J, Ephremides A (2008) An iterative framework for optimizing multicast throughput in wireless networks. In: IEEE international symposium on information theory (ISIT), pp 196–200

    Google Scholar 

  34. Nair C (2010) Capacity regions of two new classes of two-receiver broadcast channels. IEEE Trans Inf Theory 56(9):4207–4214

    Article  MathSciNet  MATH  Google Scholar 

  35. Khojastepour M, Sabharwal A, Aazhang B (2003) Bounds on achievable rates for general multi-terminal networks with practical constraints. In: Zhao F, Guibas L (eds) Information processing in sensor networks, vol 2634. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 146–161

    Chapter  Google Scholar 

  36. Hou J, Kramer G (2012) Short message noisy network coding for multiple sources. In: IEEE international symposium on information theory (ISIT), pp 1677–1681

    Google Scholar 

  37. Hou J, Kramer G (2016) Short message noisy network coding with a decode-forward option. IEEE Trans Inf Theory 62(1):89–107

    Article  MathSciNet  MATH  Google Scholar 

  38. Kätter R, Effros M, Médard M (2011) A theory of network equivalence-part i: point-to-point channels. IEEE Trans Inf Theory 57(2):972–995

    Article  MathSciNet  MATH  Google Scholar 

  39. Kätter R, Effros M, Médard M (2010) A theory of network equivalence, parts I and II, submitted to IEEE Trans Inf Theory. arXiv:1007.1033 [cs.IT]

  40. Kätter R, Effros M, Médard M (2009b) On a theory of network equivalence. In: IEEE information theory workshop on networking and information theory (ITW), pp 326–330

    Google Scholar 

  41. Kätter R, Effros M, Médard M (2009a) Beyond network equivalence. In: Annual allerton conference on communication, control, and computing (Allerton), pp 997–1004

    Google Scholar 

  42. Effros M (2010a) Capacity bounds for networks of broadcast channels. In: IEEE international symposium on information theory (ISIT), pp 580–584

    Google Scholar 

  43. Effros M (2010b) On capacity outer bounds for a simple family of wireless networks. In: Information theory and applications workshop (ITA), pp 1–7

    Google Scholar 

  44. Du J, Médard M, Xiao M, Skoglund M (2013) Lower bounding models for wireless networks. In: IEEE international symposium on information theory (ISIT), pp 1456–1460

    Google Scholar 

  45. du Pin Calmon F, Médard M, Effros M (2011) Equivalent models for multi-terminal channels. In: IEEE information theory workshop (ITW), pp 370–374

    Google Scholar 

  46. Wan L, Luo J (2010) Wireless multicasting via iterative optimization. In: IEEE international symposium on information theory (ISIT), pp 2333–2337

    Google Scholar 

  47. Blackwell D, Breiman L, Thomasian AJ (1959) The capacity of a class of channels. Ann Math Stat 30(4):1229–1241

    Article  MathSciNet  MATH  Google Scholar 

  48. Aref M (1980) Information flow in relay networks. PhD thesis, Stanford University, Stanford, CA

    Google Scholar 

  49. Cover TM (1972) Broadcast channels. IEEE Trans Inf Theory 18(1):2–14

    Article  MathSciNet  MATH  Google Scholar 

  50. Körner J, Marton K (1977) Comparison of two noisy channels. In: Csiszár I, Elias P (eds) Topics in information theory (Colloquia Mathematica Societatis JInos Bolyai, Keszthely, Hungary, 1975). North-Holland, Amsterdam, pp 411–423

    Google Scholar 

  51. Nair C, Wang Z (2011) The capacity region of the three receiver less noisy broadcast channel. IEEE Trans Inf Theory 57(7):4058–4062

    Article  MathSciNet  MATH  Google Scholar 

  52. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press

    Google Scholar 

  53. Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming. SIAM studies in applied mathematics, Society for industrial and applied mathematics (SIAM). Philadelphia, PA

    Google Scholar 

  54. Jindal N, Vishwanath S, Goldsmith A (2004) On the duality of gaussian multiple-access and broadcast channels. IEEE Trans Inf Theory 50(5):768–783

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Riemensberger .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Riemensberger, M. (2018). Network Coding Bounds and Submodularity. In: Submodular Rate Region Models for Multicast Communication in Wireless Networks. Foundations in Signal Processing, Communications and Networking, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-65232-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65232-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65231-3

  • Online ISBN: 978-3-319-65232-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics