Skip to main content

Overview of Anticoagulation Agents

  • Chapter
  • First Online:

Abstract

The past decade witnessed a rapid introduction of new anticoagulation agents to prevent and treat venous thromboembolism (VTE). The use of heparin and warfarin had been the standard practice, although new classes of drugs which directly target the enzymatic activity of thrombin and factor Xa have become more popular. Achieving higher levels of specificity and predictability and better patient compliance were the aims of most recent developments in anticoagulation agents to meet the needs of a wider population. This chapter discusses the clinical and practical use of both parenteral and oral anticoagulants and their risks and benefits particularly for managing VTE.

This is a preview of subscription content, log in via an institution.

References

  1. Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991;30(43):10363–70.

    Article  CAS  PubMed  Google Scholar 

  2. Chuang YJ, et al. Heparin enhances the specificity of antithrombin for thrombin and factor Xa independent of the reactive center loop sequence. Evidence for an exosite determinant of factor Xa specificity in heparin-activated antithrombin. J Biol Chem. 2001;276(18):14961–71.

    Article  CAS  PubMed  Google Scholar 

  3. Stead N, Kaplan AP, Rosenberg RD. Inhibition of activated factor XII by antithrombin-heparin cofactor. J Biol Chem. 1976;251(21):6481–8.

    CAS  PubMed  Google Scholar 

  4. Spinler SA, et al. Anticoagulation monitoring part 2: unfractionated heparin and low-molecular-weight heparin. Ann Pharmacother. 2005;39(7–8):1275–85.

    Article  CAS  PubMed  Google Scholar 

  5. Vandiver JW, Vondracek TG. Antifactor Xa levels versus activated partial thromboplastin time for monitoring unfractionated heparin. Pharmacotherapy. 2012;32(6):546–58.

    Article  CAS  PubMed  Google Scholar 

  6. Nelson-Piercy C. Hazards of heparin: allergy, heparin-induced thrombocytopenia and osteoporosis. Baillieres Clin Obstet Gynaecol. 1997;11(3):489–509.

    Article  CAS  PubMed  Google Scholar 

  7. Gabriel RS, White HD. ExTRACT-TIMI 25 trial: clarifying the role of enoxaparin in patients with ST-elevation myocardial infarction receiving fibrinolysis. Expert Rev Cardiovasc Ther. 2007;5(5):851–7.

    Article  CAS  PubMed  Google Scholar 

  8. Antman EM, et al. Enoxaparin versus unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction. N Engl J Med. 2006;354(14):1477–88.

    Article  CAS  PubMed  Google Scholar 

  9. Guervil DJ, et al. Activated partial thromboplastin time versus antifactor Xa heparin assay in monitoring unfractionated heparin by continuous intravenous infusion. Ann Pharmacother. 2011;45(7–8):861–8.

    Article  CAS  PubMed  Google Scholar 

  10. Protamine sulfate monograph for professionals; 2017. http://www.Drugs.com.

  11. Research, C.f.D.E.a., Postmarket drug safety information for patients and providers – generic enoxaparin questions and answers; 2017.

    Google Scholar 

  12. Hale G, Brenner M. Risks and benefits of low molecular-weight heparin and target-specific oral anticoagulant use for thromboprophylaxis in medically ill patients. Am J Cardiovasc Drugs. 2015;15(5):311–22.

    Article  CAS  PubMed  Google Scholar 

  13. Babin JL, Traylor KL, Witt DM. Laboratory monitoring of low-molecular-weight heparin and fondaparinux. Semin Thromb Hemost. 2017;43(3):261–9.

    CAS  PubMed  Google Scholar 

  14. Jeffrey RF, et al. Anticoagulation with low molecular weight heparin (Fragmin) during continuous hemodialysis in the intensive care unit. Artif Organs. 1993;17(8):717–20.

    Article  CAS  PubMed  Google Scholar 

  15. Clinical use of coagulation tests – UpToDate; 2017. https://www.uptodate.com/contents/clinical-use-of-coagulation-tests?source=see_link&sectionName=Anti-factor%20Xa%20activity&anchor=H2326381811#H2326381811.

  16. Kelton JG, Warkentin TE. Heparin-induced thrombocytopenia: a historical perspective. Blood. 2008;112(7):2607–16.

    Article  CAS  PubMed  Google Scholar 

  17. Clinical presentation and diagnosis of heparin-induced thrombocytopenia – UpToDate; 2017. https://www.uptodate.com/contents/clinical-presentation-and-diagnosis-of-heparin-induced-thrombocytopenia.

  18. Guarino ML, et al. New platelet functional method for identification of pathogenic antibodies in HIT patients. Platelets. 2017:1–3.

    Google Scholar 

  19. Warkentin TE. Platelet count monitoring and laboratory testing for heparin-induced thrombocytopenia. Arch Pathol Lab Med. 2002;126(11):1415–23.

    PubMed  Google Scholar 

  20. Dager WE, et al. Heparin-induced thrombocytopenia: treatment options and special considerations. Pharmacotherapy. 2007;27(4):564–87.

    Article  CAS  PubMed  Google Scholar 

  21. Clarke RJ, et al. Combined administration of aspirin and a specific thrombin inhibitor in man. Circulation. 1991;83(5):1510–8.

    Article  CAS  PubMed  Google Scholar 

  22. Tardy-Poncet B, et al. Argatroban in the management of heparin-induced thrombocytopenia: a multicenter clinical trial. Crit Care. 2015;19:396.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ginsberg JS, et al. Effects on thrombin generation of single injections of Hirulog in patients with calf vein thrombosis. Thromb Haemost. 1994;72(4):523–5.

    CAS  PubMed  Google Scholar 

  24. van Es N, et al. New developments in parenteral anticoagulation for arterial and venous thromboembolism. Best Pract Res Clin Haematol. 2013;26(2):203–13.

    Article  PubMed  Google Scholar 

  25. Warkentin TE, Greinacher A, Koster A. Bivalirudin. Thromb Haemost. 2008;99(5):830–9.

    CAS  PubMed  Google Scholar 

  26. Jabr K, et al. Plasma-modified ACT can be used to monitor bivalirudin (Angiomax) anticoagulation for on-pump cardiopulmonary bypass surgery in a patient with heparin-induced thrombocytopenia. J Extra Corpor Technol. 2004;36(2):174–7.

    PubMed  Google Scholar 

  27. Coppens M, et al. Translational success stories: development of direct thrombin inhibitors. Circ Res. 2012;111(7):920–9.

    Article  CAS  PubMed  Google Scholar 

  28. Ansell J, et al. The pharmacology and management of the vitamin K antagonists: the Seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126(3 Suppl):204s–33s.

    Article  CAS  PubMed  Google Scholar 

  29. Rubin TA, Murdoch M, Nelson DB. Acute GI bleeding in the setting of supratherapeutic international normalized ratio in patients taking warfarin: endoscopic diagnosis, clinical management, and outcomes. Gastrointest Endosc. 2003;58(3):369–73.

    PubMed  Google Scholar 

  30. Guyatt GH, et al. Executive summary: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):7s–47s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crowther MA, et al. A randomized trial comparing 5-mg and 10-mg warfarin loading doses. Arch Intern Med. 1999;159(1):46–8.

    Article  CAS  PubMed  Google Scholar 

  32. Harrison L, et al. Comparison of 5-mg and 10-mg loading doses in initiation of warfarin therapy. Ann Intern Med. 1997;126(2):133–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kovacs MJ, et al. Comparison of 10-mg and 5-mg warfarin initiation nomograms together with low-molecular-weight heparin for outpatient treatment of acute venous thromboembolism. A randomized, double-blind, controlled trial. Ann Intern Med. 2003;138(9):714–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wallentin L, et al. Efficacy and safety of dabigatran compared with warfarin at different levels of international normalised ratio control for stroke prevention in atrial fibrillation: an analysis of the RE-LY trial. Lancet. 2010;376(9745):975–83.

    Article  CAS  PubMed  Google Scholar 

  35. De Caterina R, et al. New oral anticoagulants in atrial fibrillation and acute coronary syndromes: ESC working group on thrombosis – task force on anticoagulants in heart disease position paper. J Am Coll Cardiol. 2012;59(16):1413–25.

    Article  PubMed  Google Scholar 

  36. Hart R, et al. Impact of body mass index and genetics on warfarin major bleeding outcomes in a community setting. Am J Med. 2017;130(2):222–8.

    Article  PubMed  Google Scholar 

  37. Mueller JA, et al. Warfarin dosing and body mass index. Ann Pharmacother. 2014;48(5):584–8.

    Article  PubMed  Google Scholar 

  38. January CT, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64(21):e1–76.

    Article  PubMed  Google Scholar 

  39. Gage BF, Fihn SD, White RH. Warfarin therapy for an octogenarian who has atrial fibrillation. Ann Intern Med. 2001;134(6):465–74.

    Article  CAS  PubMed  Google Scholar 

  40. Marcucci M, et al. Prophylaxis of venous thromboembolism in elderly patients with multimorbidity. Intern Emerg Med. 2013;8(6):509–20.

    Article  PubMed  Google Scholar 

  41. Hallas J, et al. Use of single and combined antithrombotic therapy and risk of serious upper gastrointestinal bleeding: population based case-control study. Br Med J. 2006;333(7571):726–8.

    Article  Google Scholar 

  42. Hansen ML, et al. Risk of bleeding with single, dual, or triple therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch Intern Med. 2010;170(16):1433–41.

    Article  CAS  PubMed  Google Scholar 

  43. Albers GW, et al. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a randomized trial. JAMA. 2005;293(6):690–8.

    Article  PubMed  Google Scholar 

  44. Olsson SB. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet. 2003;362(9397):1691–8.

    Article  CAS  PubMed  Google Scholar 

  45. Schulman S. Quality of oral anticoagulant control and treatment in Sweden. Duration of anticoagulation (DURAC) trial study group. J Intern Med. 1994;236(2):143–52.

    Article  CAS  PubMed  Google Scholar 

  46. Kearon C, et al. Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism. N Engl J Med. 2003;349(7):631–9.

    Article  CAS  PubMed  Google Scholar 

  47. Ridker PM, et al. Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism. N Engl J Med. 2003;348(15):1425–34.

    Article  CAS  PubMed  Google Scholar 

  48. Di Minno MN, Ambrosino P, Dentali F. Safety of warfarin in “high-risk” populations: a meta-analysis of randomized and controlled trials. Thromb Res. 2017;150:1–7.

    Article  PubMed  Google Scholar 

  49. Tan J, et al. Warfarin use and stroke, bleeding and mortality risk in patients with end stage renal disease and atrial fibrillation: a systematic review and meta-analysis. BMC Nephrol. 2016;17(1):157.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Conway EM, et al. Suppression of hemostatic system activation by oral anticoagulants in the blood of patients with thrombotic diatheses. J Clin Invest. 1987;80(6):1535–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McGehee WG, et al. Coumarin necrosis associated with hereditary protein C deficiency. Ann Intern Med. 1984;101(1):59–60.

    Article  CAS  PubMed  Google Scholar 

  52. Crowther MA, et al. Oral vitamin K produces a normal INR within 24 hours of its administration in most patients discontinuing warfarin. Haematologica. 2005;90(1):137–9.

    CAS  PubMed  Google Scholar 

  53. Crowther MA, et al. Oral vitamin K lowers the international normalized ratio more rapidly than subcutaneous vitamin K in the treatment of warfarin-associated coagulopathy. A randomized, controlled trial. Ann Intern Med. 2002;137(4):251–4.

    Article  CAS  PubMed  Google Scholar 

  54. Gomez-Outes A, et al. Direct-acting oral anticoagulants: pharmacology, indications, management, and future perspectives. Eur J Haematol. 2015;95(5):389–404.

    Article  CAS  PubMed  Google Scholar 

  55. Buller HR, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369(15):1406–15.

    Article  PubMed  Google Scholar 

  56. Buller HR, et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N Engl J Med. 2012;366(14):1287–97.

    Article  PubMed  Google Scholar 

  57. Bauersachs RM, et al. Rivaroxaban versus enoxaparin/vitamin K antagonist therapy in patients with venous thromboembolism and renal impairment. Thromb J. 2014;12:25.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Agnelli G, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369(9):799–808.

    Article  CAS  PubMed  Google Scholar 

  59. Schulman S, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361(24):2342–52.

    Article  CAS  PubMed  Google Scholar 

  60. Castellucci LA, et al. Clinical and safety outcomes associated with treatment of acute venous thromboembolism: a systematic review and meta-analysis. JAMA. 2014;312(11):1122–35.

    Article  CAS  PubMed  Google Scholar 

  61. Jones WS, et al. Efficacy and safety of rivaroxaban compared with warfarin in patients with peripheral artery disease and non-valvular atrial fibrillation: insights from ROCKET AF. Eur Heart J. 2014;35(4):242–9.

    Article  CAS  PubMed  Google Scholar 

  62. Giugliano RP, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

    Article  CAS  PubMed  Google Scholar 

  63. Holster IL, et al. New oral anticoagulants increase risk for gastrointestinal bleeding: a systematic review and meta-analysis. Gastroenterology. 2013;145(1):105.e15–12.e15.

    Article  Google Scholar 

  64. Abraham NS, et al. Comparative risk of gastrointestinal bleeding with dabigatran, rivaroxaban, and warfarin: population based cohort study. BMJ. 2015;350:h1857.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Touma L, et al. A meta-analysis of randomized controlled trials of the risk of bleeding with apixaban versus vitamin K antagonists. Am J Cardiol. 2015;115(4):533–41.

    Article  CAS  PubMed  Google Scholar 

  66. Mantha S, Ansell J. Indirect comparison of dabigatran, rivaroxaban, apixaban and edoxaban for the treatment of acute venous thromboembolism. J Thromb Thrombolysis. 2015;39(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  67. Kearon C, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149(2):315–52.

    Article  PubMed  Google Scholar 

  68. Schulman S, et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation. 2014;129(7):764–72.

    Article  CAS  PubMed  Google Scholar 

  69. Bauersachs R, et al. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010;363(26):2499–510.

    Article  CAS  PubMed  Google Scholar 

  70. Prins MH, et al. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies. Thromb J. 2013;11(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shore S, et al. Adherence to dabigatran therapy and longitudinal patient outcomes: insights from the veterans health administration. Am Heart J. 2014;167(6):810–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. di Benedetto P, et al. Patient compliance with new oral anticoagulants after major orthopaedic surgery: rivaroxaban and dabigatran compared with subcutaneous injection of fondaparinux. Joints. 2016;4(4):214–21.

    Article  Google Scholar 

  73. Shore S, et al. Site-level variation in and practices associated with dabigatran adherence. JAMA. 2015;313(14):1443–50.

    Article  CAS  PubMed  Google Scholar 

  74. Ponzetto M, et al. Risk factors for early and late mortality in hospitalized older patients: the continuing importance of functional status. J Gerontol A Biol Sci Med Sci. 2003;58(11):1049–54.

    Article  PubMed  Google Scholar 

  75. Favaloro EJ, Lippi G. Laboratory testing in the era of direct or non-vitamin K antagonist oral anticoagulants: a practical guide to measuring their activity and avoiding diagnostic errors. Semin Thromb Hemost. 2015;41(2):208–27.

    Article  CAS  PubMed  Google Scholar 

  76. Conway SE, et al. Laboratory and clinical monitoring of direct acting oral anticoagulants: what clinicians need to know. Pharmacotherapy. 2017;37(2):236–48.

    Article  PubMed  Google Scholar 

  77. Heidbuchel H, et al. Updated European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2015;17(10):1467–507.

    Article  PubMed  Google Scholar 

  78. Ageno W, et al. Oral anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):e44S–88S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eliquis® (apixaban) package insert. Princeton, NJ: Bristol-Myers Squibb Company; 2012. Revised 2016 Jul. 2012.

    Google Scholar 

  80. Kubitza D, et al. Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol. 2013;76(1):89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ressel G. AAP updates statement for transfer of drugs and other chemicals into breast milk. American Academy of Pediatrics. Am Fam Physician. 2002;65(5):979–80.

    PubMed  Google Scholar 

  82. Saouti N, et al. Left subclavian artery revascularization as part of thoracic stent grafting. Eur J Cardiothorac Surg. 2015;47(1):120–5. discussion 125

    Article  PubMed  Google Scholar 

  83. Pollack CVJ, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373(6):511–20.

    Article  CAS  PubMed  Google Scholar 

  84. Ansell JE, et al. Use of PER977 to reverse the anticoagulant effect of edoxaban. N Engl J Med. 2014;371(22):2141–2.

    Article  PubMed  Google Scholar 

  85. Gogarten W, et al. Regional anaesthesia and antithrombotic agents: recommendations of the European Society of Anaesthesiology. Eur J Anaesthesiol. 2010;27(12):999–1015.

    Article  CAS  PubMed  Google Scholar 

  86. Healey JS, et al. Periprocedural bleeding and thromboembolic events with dabigatran compared with warfarin: results from the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) randomized trial. Circulation. 2012;126(3):343–8.

    Article  CAS  PubMed  Google Scholar 

  87. Sherwood MW, et al. Outcomes of temporary interruption of rivaroxaban compared with warfarin in patients with nonvalvular atrial fibrillation: results from the rivaroxaban once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation (ROCKET AF). Circulation. 2014;129(18):1850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Paikin JS, et al. Timing the first postoperative dose of anticoagulants: lessons learned from clinical trials. Chest. 2015;148(3):587–95.

    Article  PubMed  Google Scholar 

  89. Levy JH. Discontinuation and management of direct-acting anticoagulants for emergency procedures. Am J Emerg Med. 2016;34(11s):14–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassius Iyad Ochoa Chaar MD, MS, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jorshery, S.D., Aurshina, A., Chaar, C.I.O. (2018). Overview of Anticoagulation Agents. In: Chaar, C. (eds) Current Management of Venous Diseases . Springer, Cham. https://doi.org/10.1007/978-3-319-65226-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65226-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65225-2

  • Online ISBN: 978-3-319-65226-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics