Skip to main content

Molecular Rotational Effects in Free-Space N+ 2 Lasers Induced by Strong-Field Ionization

  • Chapter
  • First Online:
Air Lasing

Abstract

Free-space\( \kern0.28em {\mathrm{N}}_2^{+}\kern0.28em \)lasers induced by strong-field ionization have shown a great potential for the standoff diagnostics of quantum rotational wave packets in air molecules and for the fingerprint identification of chemical species, thanks to their capability of remotely generating intense, narrow-bandwidth, coherent emissions. It has been observed that the laser signals are strongly influenced by the dynamics of the rotational wave packets in the \( {\mathrm{N}}_2^{+} \) ions produced by photoionization in the intense laser fields. This chapter gives an overview of the experimental results of the effects of molecular rotations in the free-space \( {\mathrm{N}}_2^{+} \) lasers. We will begin with the description of the ultrafast dynamics of coherent rotational wave packets using the \( {\mathrm{N}}_2^{+} \) laser as an optical probe. We will follow with a discussion of the coherent coupling of the rotational quantum states in a strong laser field, manipulation of the polarization of \( {\mathrm{N}}_2^{+} \) laser emission, and the observation of impulsive rotational Raman scattering induced by the \( {\mathrm{N}}_2^{+} \) laser. Finally, a summary and perspective will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J. Itatani et al., Tomographic imaging of molecular orbitals. Nature 432, 867 (2004)

    Google Scholar 

  2. C. Vozzi et al., Controlling two-center interference in molecular high harmonic generation. Phys. Rev. Lett. 95, 153902 (2005)

    Google Scholar 

  3. H.J. Worner et al., Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 33, 208 (2011)

    Article  ADS  Google Scholar 

  4. S. Varma, Y.H. Chen, H.M. Milchberg, Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air. Phys. Rev. Lett. 101, 205001 (2008)

    Article  ADS  Google Scholar 

  5. A. Giusti-Suzor et al., Above-threshold dissociation of \( {\mathrm{H}}_2^{+} \) in intense laser fields. Phys. Rev. Lett. 64, 515 (1990)

    Google Scholar 

  6. R. Vellota et al., High-order harmonic generation in aligned molecules. Phys. Rev. Lett. 87, 183901 (2001)

    Article  ADS  Google Scholar 

  7. P.H. Bucksbaum et al., Softening of the \( {\mathrm{H}}_2^{+} \) molecular bond in intense laser fields. Phys. Rev. Lett. 64, 1883 (1990)

    Google Scholar 

  8. T. Seideman, Rotational excitation and molecular alignment in intense laser fields. J. Chem. Phys. 103, 7887 (1995)

    Article  ADS  Google Scholar 

  9. O. Smirnova et al., High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972 (2009)

    Article  ADS  Google Scholar 

  10. J.P. Yao et al., Remote creation of coherent emissions in air with two-color ultrafast laser pulses. New J. Phys. 15, 023046 (2013)

    Article  ADS  Google Scholar 

  11. H.S. Zhang et al., Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field. Phys. Rev. X 3, 041009 (2013)

    Google Scholar 

  12. J.L. Ni et al., Identification of the physical mechanism of generation of coherent \( {\mathrm{N}}_2^{+} \) emissions in air by femtosecond laser excitation. Opt. Express 21, 8746 (2013)

    Google Scholar 

  13. H.L. Xu et al., Sub-10-fs population inversion in \( {\mathrm{N}}_2^{+} \) in air lasing through multiple state coupling. Nat. Commun. 6, 8347 (2015)

    Google Scholar 

  14. J.P. Yao et al., Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields. Phys. Rev. Lett. 116, 143007 (2016)

    Article  ADS  Google Scholar 

  15. J.P. Yao et al., High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 84, 051802(R) (2011)

    Google Scholar 

  16. D. Karatashov et al., Stimulated Amplification of UV Emission in a Femtosecond Filament Using Adaptive Control, in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2012), paper QTh4E.6 (2012)

    Google Scholar 

  17. Y. Liu et al., Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 21, 22791 (2013)

    Article  ADS  Google Scholar 

  18. T.J. Wang et al., Self-seeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air. Laser Phys. Lett. 10, 125401 (2013)

    Google Scholar 

  19. W. Chu et al., A self-induced white light seeding laser in a femtosecond laser filament. Laser Phys. Lett. 11, 015301 (2013)

    Google Scholar 

  20. S.L. Chin et al., Natural population inversion in a gaseous molecular filament. Chin. Opt. Lett. 11, 013201 (2013)

    Article  ADS  Google Scholar 

  21. G. Andriukaitis et al., Intense, directional UV emission from molecular nitrogen ions in an adaptively controlled femtosecond filament. EPJ Web of Conferences 41, 10004 (2013)

    Article  Google Scholar 

  22. H.S. Zhang et al., Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field. Phys. Rev. A 88, 063417 (2013)

    Article  ADS  Google Scholar 

  23. T.J. Wang et al., Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air. Phys. Rev. A 88, 053429 (2013)

    Article  ADS  Google Scholar 

  24. A. Baltuška, D. Kartashov, Transient Inversion in Rotationally Aligned Nitrogen Ions in a Femtosecond Filament, in Research in Optical Sciences, OSA Technical Digest (online) (Optical Society of America, 2014), paper HTh4B.5 (2014)

    Google Scholar 

  25. J.L. Ni et al., Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament. Opt. Lett. 39, 2250 (2014)

    Article  ADS  Google Scholar 

  26. B. Zeng et al., Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy. Phys. Rev. A 89, 042508 (2014)

    Article  ADS  Google Scholar 

  27. G. Point et al., Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser. Opt. Lett. 39, 1725 (2014)

    Article  ADS  Google Scholar 

  28. H.Q. Xie et al., Coupling of \( {\mathrm{N}}_2^{+} \) rotational states in an air laser from tunnel-ionized nitrogen molecules. Phys. Rev. A 90, 042504 (2014)

    Google Scholar 

  29. G.H. Li et al., Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization. Phys. Rev. A 89, 033833 (2014)

    Article  ADS  Google Scholar 

  30. C.R. Jing et al., Generation of an air laser at extended distances by femtosecond laser filamentation with telescope optics. Opt. Express 22, 3151 (2014)

    Article  ADS  Google Scholar 

  31. Y. Liu et al., Recollision-induced superradiance of ionized nitrogen molecules. Phys. Rev. Lett. 115, 133203 (2015)

    Google Scholar 

  32. C.R. Jing et al., Dynamic wavelength switching of a remote nitrogen or air laser with chirped femtosecond laser pulses. Laser Phys. Lett. 12, 015301 (2015)

    Google Scholar 

  33. P. Wang, C.Y. Wu, M.W. Lei, Population dynamics of molecular nitrogen initiated by intense femtosecond laser pulses. Phys. Rev. A 92, 063412 (2015)

    Article  ADS  Google Scholar 

  34. Z.T. Li et al., Generation of elliptically polarized nitrogen ion laser fields using two color femtosecond laser pulses. Sci. Rep. 6, 21504 (2016)

    Google Scholar 

  35. A. Azarm, P. B. Corkum, P. G. Polynkin, Rotational Mechanism of Lasing in Singly Ionized Nitrogen Molecules under Femtosecond mid-IR Pumping, in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh4B.9 (2016)

    Google Scholar 

  36. M. Spanner et al., Mechanisms of two-color laser-induced field-free molecular orientation. Phys. Rev. Lett. 109, 113001 (2012)

    Google Scholar 

  37. A. Nazarkin et al., Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium. Phys. Rev. Lett. 83, 2560 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, J. et al. (2018). Molecular Rotational Effects in Free-Space N+ 2 Lasers Induced by Strong-Field Ionization. In: Polynkin, P., Cheng, Y. (eds) Air Lasing. Springer Series in Optical Sciences, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65220-7_4

Download citation

Publish with us

Policies and ethics