Skip to main content

Lipschitz and Hölder Shadowing and Structural Stability

  • Chapter
  • First Online:
Shadowing and Hyperbolicity

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2193))

  • 720 Accesses

Abstract

In this chapter, we give either complete proofs or schemes of proof of the following main results:

  • If a diffeomorphism f of a smooth closed manifold has the Lipschitz shadowing property, then f is structurally stable (Theorem 2.3.1);

  • a diffeomorphism f has the Lipschitz periodic shadowing property if and only if f is Ω-stable (Theorem 2.4.1);

  • if a diffeomorphism f of class C 2 has the Hölder shadowing property on finite intervals with constants \(\mathcal{L},C,d_{0},\theta,\omega\), where θ ∈ (1∕2, 1) and θ + ω > 1, then f is structurally stable (Theorem 2.5.1);

  • there exists a homeomorphism of the interval that has the Lipschitz shadowing property and a nonisolated fixed point (Theorem 2.6.1);

  • if a vector field X has the Lipschitz shadowing property, then X is structurally stable (Theorem 2.7.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birkhoff, G.: Dynamical Systems. Colloquium Publ., vol. 9. Amer. Math. Soc., New York (1927)

    Google Scholar 

  2. Coppel, W.A.: Dichotomies in Stability Theory. Lect. Notes Math., vol. 629. Springer, Berlin (1978)

    Google Scholar 

  3. Hammel, S.M., Yorke, J.A., Grebogi, C.: Do numerical orbits of chaotic dynamical processes represent true orbits? J. Complexity 3, 136–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hammel, S.M., Yorke, J.A., Grebogi, C.: Numerical orbits of chaotic processes represent true orbits. Bull. Am. Math. Soc. (N.S.) 19, 465–469 (1988)

    Google Scholar 

  5. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  6. Maizel, A.D.: On stability of solutions of systems of differential equations, Trudy Ural. Politehn. Inst. 51, 20–50 (1954)

    MathSciNet  Google Scholar 

  7. Mañé, R.: Characterizations of AS Diffeomorphisms. Geometry and Topology. Lect. Notes Math., vol. 597, pp. 389–394. Springer, Berlin (1977)

    Google Scholar 

  8. Ombach, J.: Shadowing, expansiveness and hyperbolic homeomorphisms. J. Aust. Math. Soc. (Ser. A) 61, 57 – 72 (1996).

    Google Scholar 

  9. Osipov, A.V., Pilyugin, S.Yu., Tikhomirov, S.B.: Periodic shadowing and Ω-stability. Regul. Chaotic Dyn. 15, 404–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Palmer, K.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104, 149–156 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Palmer, K.J., Pilyugin, S.Yu., Tikhomirov, S.B.: Lipschitz shadowing and structural stability of flows. J. Differ. Equ. 252, 1723–1747 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Petrov, A.A., Pilyugin, S.Yu.: Nonsmooth mappings with Lipschitz shadowing. arXiv:1510.03074 [math.DS] (2015)

    Google Scholar 

  13. Pilyugin, S.Yu.: Variational shadowing. Discrete Contin. Dyn. Syst., Ser. B. 14, 733–737 (2010)

    Google Scholar 

  14. Pilyugin, S.Yu., Tikhomirov, S.B.: Lipschitz shadowing implies structural stability. Nonlinearity 23, 2509–2515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pilyugin, S.Yu.: Spaces of Dynamical Systems. Walter de Gruyter, Berlin/Boston (2012)

    Book  MATH  Google Scholar 

  16. Pliss, V.A.: Bounded Solutions of Nonhomogeneous Linear Systems of Differential Equations. Problems in the Asymptotic Theory of Nonlinear Oscillations, pp. 168–173, Kiev (1977)

    Google Scholar 

  17. Tikhomirov, S.B.: Holder shadowing on finite intervals. Ergod. Theory Dyn. Syst. 35, 2000–2016 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pilyugin, S.Y., Sakai, K. (2017). Lipschitz and Hölder Shadowing and Structural Stability. In: Shadowing and Hyperbolicity. Lecture Notes in Mathematics, vol 2193. Springer, Cham. https://doi.org/10.1007/978-3-319-65184-2_2

Download citation

Publish with us

Policies and ethics