Dimension Formula for Slice for Visible Actions on Spherical Nilpotent Orbits in Complex Simple Lie Algebras

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 207)

Abstract

The recent paper [19] has studied spherical nilpotent orbits in complex simple Lie algebras from the viewpoint of the notion of strongly visible actions introduced by T. Kobayashi. The aim of this paper is to give a dimension formula for a slice for the strongly visible action on a spherical nilpotent orbit. This provides an unified explanation of the strong visibility for the action on a spherical nilpotent orbit. Further, we prove that our choice of slice for this action satisfies its dimension equals the rank of a nilpotent orbit, which suggests a deep relation between complex geometry and multiplicity-free representation in complex nilpotent orbits.

Keywords

Visible action Multiplicity-free representation Nilpotent orbit Spherical Slice Rank 

2010 Mathematics Subject Classification

Primary: 22E46 Secondary: 32M10 32M05 14M17 

References

  1. 1.
    Benson, C., Ratcliff, G.: A classification of multiplicity free actions. J. Algebra 181, 152–186 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berger, M.: Les espaces symmétriques noncompacts. Ann. Sci. École Norm. Sup. 74, 85–177 (1957)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Collingwood, D., McGovern, W.: Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York (1993)Google Scholar
  4. 4.
    Flensted-Jensen, M.: Spherical functions of a real semisimple Lie group. A method of reduction to the complex case. J. Funct. Anal 30, 106–146 (1978)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Graduated Studies in Mathematics, 34. American Mathematical Society, Providence, RI (2001)Google Scholar
  6. 6.
    Kac, V.: Some remarks on nilpotent orbits. J. Algebra 64, 190–213 (1980)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kobayashi, T.: Multiplicity-free representations and visible actions on complex manifolds. Publ. Res. Inst.Math. Sci (Special issue commemorating the fortieth anniversary of the founding of RIMS) 41, 497–549 (2005)Google Scholar
  8. 8.
    Kobayashi, T.: Introduction to visible actions on complex manifolds and multiplicity-free representations. In:Morimoto T. (ed.) Developments of Cartan Geometry and Related Mathematical Problems, Surikaiseki Kokyuroku 1502, pp. 82–95. Research Institute for Mathematical Sciences, Kyoto, Japan (2006)Google Scholar
  9. 9.
    Kostant, B.: The principal three-dimensional subgroup and Betti numbers of a complex simple Lie group. Amer. J. Math. 81, 973–1032 (1959)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Leahy, A.: A classification of multiplicity free representations. J. Lie Theory 8, 367–391 (1998)MathSciNetMATHGoogle Scholar
  11. 11.
    Mal’cev, A. I.: On semi-simple subgroups of Lie groups. Amer. Math. Soc. Transl. 1950 (1950), 43 ppGoogle Scholar
  12. 12.
    Okuda, T.: Classification of semisimple symmetric spaces with proper \(SL(2,\mathbb{R})\)-action. J. Differential Geom. 94, 301–342 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Panyushev, D.: Complexity and nilpotent orbits. Manuscripta Math. 83, 223–237 (1994)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Panyushev, D.: On spherical nilpotent orbits and beyond. Ann. Inst. Fourier 49, 1453–1476 (1999)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Panyushev, D.: Some amazing properties of spherical nilpotent orbits. Math. Z. 245, 557–580 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Rossmann, W.: The structure of semisimple symmetric spaces. Canad. J. Math. 31, 157–180 (1979)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sasaki, A.: Visible actions on irreducible multiplicity-free spaces. Int. Math. Res. Not. IMRN 18, 3445–3466 (2009)Google Scholar
  18. 18.
    Sasaki, A.: Visible actions on reducible multiplicity-free spaces. Int. Math. Res. Not. IMRN 4, 885–929 (2011)Google Scholar
  19. 19.
    Sasaki, A.: Visible actions on spherical nilpotent orbits in complex simple Lie algebras. J. Lie Theory 26, 597–649 (2016)Google Scholar
  20. 20.
    Vinberg, E.B.: Complexity of actions of reductive groups. Functional Anal. Appl. 20, 1–11 (1986)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Vinberg, E.B., Kimelfeld, B.N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funct. Anal. Appl. 12, 168–174 (1978)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics, School of ScienceTokai UniversityHiratsukaJapan

Personalised recommendations