Color Lie Bialgebras: Big Bracket, Cohomology and Deformations

  • Benedikt Hurle
  • Abdenacer Makhlouf
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 207)


The main purpose of this paper is first to summarize the basics on color Lie bialgebras and then construct a big bracket which is used to define explicitly a cohomology complex and study deformations of color Lie bialgebras. Moreover, we provide some classification results and examples of cohomology computations.


Color Lie algebra Color Lie bialgebra Cohomology Deformation Big bracket 


  1. 1.
    Abdaoui, K., Ammar, F., Makhlouf, A.: Constructions and cohomology of Hom-Lie color algebras. Commun. Algebra 43(11), 4581–4612 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andruskiewitsch, N.: Lie superbialgebras and Poisson-Lie supergroups. Abh. Math. Sem. Univ. Hamburg 63, 147–163 (1993)Google Scholar
  3. 3.
    Bahturin, Y., Kochetov, M.: Classification of group gradings on simple Lie algebras of types A, B, C and D. J. Algebra 324, 2971–2989 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Belavin, A., Drinfeld, V.: Triangle equations and simple Lie algebras. Sov. Sci. Rev. Sect. C 4, 93–165 (1984)MathSciNetMATHGoogle Scholar
  5. 5.
    Bergen, J., Passman, D.S.: Delta ideal of Lie color algebras. J. Algebra 177, 740–754 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, X.-W., Silvestrov, S.D., Van Oystaeyen, F.: Representations and cocycle twists of color Lie algebras. Algebras and Representations Theory 17(9), 633–650 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Drinfeld, V.G.: Hamiltonian Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation. Sov. Math. Dokl. 27(1), 68–71 (1983)Google Scholar
  8. 8.
    Drinfeld, V.G.: Quasi-Hopf algebras. Algebra i Analiz 1(6), 114–148 (1989)MathSciNetGoogle Scholar
  9. 9.
    Eghbali, A., Rezaei-Aghdam, A., Heidarpour, F.: Classification of two and three dimensional Lie superbialgebras. J. Math. Phys. 51(7), 073503 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Enriquez, B., Halbout, G.: Quantization of \(\Gamma \)-Lie bialgebras. J. Algebra 319(9), 3752–3769 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras, I. Selecta Math. (N.S.) 2(1), 1–41 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Feldvoss, J.: Representations of Lie colour algebras. Adv. Math. 157, 95–137 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Feldvoss, J.: Existence of triangular Lie bialgebra structures. II. J. Pure Appl. Algebra 198(1–3), 151–163 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Geer, N.: Etingof-Kazhdan quantization of Lie superbialgebras. Adv. Math. 207(1), 1–38 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hofer, L.: Aspects algébriques et quantification des surfaces minimales. Ph.D. Université de Haute Alsace (2006)Google Scholar
  17. 17.
    Karaali, G.: Constructing \(r\)-Matrices on simple Lie superalgebras. J. Algebra 282, 83–102 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. Contemp. Math. Amer. Math. Soc. 132, 459–489 (1992)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kosmann-Schwarzbach, Y.: Lie bialgebras, Poisson Lie groups and dressing transformations. In: Integrability of Nonlinear Systems, 2nd edn. Lecture Notes in Physics 638, pp. 107–173. Springer, Berlin (2004)Google Scholar
  20. 20.
    Kosmann-Schwarzbach, Y., Magri, F.: Poisson-Lie groups and complete integrability. I. Drinfeld bialgebras, dual extensions and their canonical representations. Ann. Inst. H. Poincaré Phys. Théor. 49(4), 433–460 (1988)MathSciNetMATHGoogle Scholar
  21. 21.
    Lecomte, P.B.A., Roger, C.: Modules et cohomologie des bigèbres de Lie. C. R. Acad. Sci. Paris Sér. I Math. 310, 405–410 (1990)MathSciNetMATHGoogle Scholar
  22. 22.
    Montaner, F., Stolin, A., Zelmanov, E.: Classification of Lie bialgebras over current algebras. Selecta Math. (N.S.) 16(4), 935–962 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Nijenhuis, A., Richardson, R.W.: Deformation of homomorphisms of Lie group and Lie algebras. Bull. Am. Math. Soc. 73, 175–179 (1967)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Pop, H.C.: A generalization of Scheunert’s Theorem on cocycle twisting of color Lie algebras. arXiv:9703002 (1997)
  25. 25.
    Qingcheng, Z., Yongzheng, Z.: Derivations and extensions of Lie color algebra. Acta Math. Sci. 28, 933–948 (2008)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rittenberg, V., Wyler, D.: Generalized superalgebras. Nucl. Phys. B 139, 189–202 (1978)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rittenberg, V., Wyler, D.: Sequences of graded \(\mathbb{Z}\otimes \mathbb{Z}\) Lie algebras and superalgebras. J. Math. Phys. 19, 2193–2200 (1978)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Semenov-Tian-Shansky, M.A.: What is a classical r-matrix? Funct. Anal. Appl. 17(4), 259–272 (1983)CrossRefMATHGoogle Scholar
  29. 29.
    Scheunert, M.: The Theory of Lie Superalgebras: An Introduction. Springer, Berlin (1979)CrossRefMATHGoogle Scholar
  30. 30.
    Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20, 712–720 (1979)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Scheunert, M., Zhang, R.B.: Cohomology of Lie superalgebras and their generalizations. J. Math. Phys. 39(9), 5024–5061 (1998)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Scheunert, M.: Graded tensor calculus. J. Math. Phys. 24, 26–58 (1983)MathSciNetMATHGoogle Scholar
  33. 33.
    Silvestrov, S.D.: On the classification of 3-dimensional coloured Lie algebras. Quantum Groups and Quantum Spaces, vol. 40, pp. 159–170. Banach Center and Publications (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université de Haute-AlsaceMulhouseFrance

Personalised recommendations