Skip to main content

Random Resampling in the One-Versus-All Strategy for Handling Multi-class Problems

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2017)

Abstract

One of the most common approaches for handling the multi-class classification problem is to divise the original data set into binary subclasses and to use a set of binary classifiers in order to solve the binarization problem. A new method for solving multi-class classification problems is proposed, by incorporating random resampling techniques in the one-versus-all strategy. Specifically, the division used by the proposed method is based on the one-versus-all binarization technique using random resampling for handling the class-imbalance problem arising due to the one-versus-all binarization. The method has been tested extensively on several multiclass classification problems using Support Vector Machines with four different kernels. Experimental results show that the proposed method exhibits a better performance compared to the simple one-versus-all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Cheong, S., Oh, S.H., Lee, S.Y.: Support vector machines with binary tree architecture for multi-class classification. Neural Inf. Process. Lett. Rev. 2(3), 47–51 (2004)

    Google Scholar 

  3. Chmielnicki, W., Stąpor, K.: Using the one-versus-rest strategy with samples balancing to improve pairwise coupling classification. Int. J. Appl. Math. Comput. Sci. 26(1), 191–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  5. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Mach. Learn. 47(2), 201–233 (2002)

    Article  MATH  Google Scholar 

  6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Dogan, U., Glasmachers, T., Igel, C.: A unified view on multi-class support vector classification. J. Mach. Learn. Res. 17(45), 1–32 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Duan, K.-B., Keerthi, S.S.: Which is the best multiclass SVM method? an empirical study. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 278–285. Springer, Heidelberg (2005). doi:10.1007/11494683_28

    Chapter  Google Scholar 

  9. Fei, B., Liu, J.: Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Trans. Netw. 17(3), 696–704 (2006)

    Article  MathSciNet  Google Scholar 

  10. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014). bibtex: fernandez-delgado_we_2014. http://jmlr.org/papers/v15/delgado14a.html

    MathSciNet  MATH  Google Scholar 

  11. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  12. García-Pedrajas, N., Ortiz-Boyer, D.: An empirical study of binary classifier fusion methods for multiclass classification. Inf. Fusion 12(2), 111–130 (2011)

    Article  Google Scholar 

  13. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998). http://dx.doi.org/10.1214/aos/1028144844

    Article  MathSciNet  MATH  Google Scholar 

  14. Hodges, J.L., Lehmann, E.L.: Rank methods for combination of independent experiments in analysis of variance. In: Rojo, J. (ed.) Selected Works of E.L. Lehmann, pp. 403–418. Springer, Heidelberg (2011). doi:10.1007/978-1-4614-1412-4_35

    Google Scholar 

  15. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  16. Jian, L., Gao, C.: Binary coding SVMs for the multiclass problem of blast furnace system. IEEE Trans. Ind. Electro. 60(9), 3846–3856 (2013)

    Article  Google Scholar 

  17. Kotsiantis, S.B.: Bagging and boosting variants for handling classifications problems: a survey. Knowl. Eng. Rev. 29(01), 78–100 (2014)

    Article  Google Scholar 

  18. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365.html

    MathSciNet  Google Scholar 

  19. Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml

  20. Liu, M., Zhang, D., Chen, S., Xue, H.: Joint binary classifier learning for ecoc-based multi-class classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2335–2341 (2016)

    Article  Google Scholar 

  21. Lorena, A.C., De Carvalho, A.C., Gama, J.M.: A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 30(1), 19–37 (2008)

    Article  Google Scholar 

  22. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Rocha, A., Goldenstein, S.K.: Multiclass from binary: expanding one-versus-all, one-versus-one and ecoc-based approaches. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 289–302 (2014)

    Article  Google Scholar 

  25. Santhanam, V., Morariu, V.I., Harwood, D., Davis, L.S.: A non-parametric approach to extending generic binary classifiers for multi-classification. Pattern Recogn. 58, 149–158 (2016)

    Article  Google Scholar 

  26. Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Handling imbalanced datasets: a review. Int. Trans. Comput. Sci. Eng. 30, 25–36 (2006)

    Google Scholar 

  27. Tax, D.M., Duin, R.P.: Using two-class classifiers for multiclass classification. In: Proceedings of the 16th IEEE International Conference on Pattern Recognition, vol. 2, pp. 124–127. IEEE (2002)

    Google Scholar 

  28. Windeatt, T., Ghaderi, R.: Coding and decoding strategies for multi-class learning problems. Inf. Fusion 4(1), 11–21 (2003)

    Article  Google Scholar 

  29. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Zadrozny, B., Elkan, C.: Reducing multiclass to binary by coupling probability estimates. In: Advances in Neural Information Processing Systems, vol. 2, pp. 1041–1048 (2002)

    Google Scholar 

Download references

Acknowledgements

Stamatios-Aggelos N. Alexandropoulos gratefully acknowledges the support of his work by the Hellenic State Scholarships Foundation (IKY), co-financed by the European Union (European Social Fund–ESF) and Greek national funds, “Reinforcement of the Human Research Potential through Doctoral Research” of the Operational Program “Development of Human Capital, Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF 2014–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos K. Aridas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aridas, C.K., Alexandropoulos, SA.N., Kotsiantis, S.B., Vrahatis, M.N. (2017). Random Resampling in the One-Versus-All Strategy for Handling Multi-class Problems. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds) Engineering Applications of Neural Networks. EANN 2017. Communications in Computer and Information Science, vol 744. Springer, Cham. https://doi.org/10.1007/978-3-319-65172-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65172-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65171-2

  • Online ISBN: 978-3-319-65172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics