Sodium Content in Aluminum and Current Efficiency — Correlation through Multivariate Analysis

  • Lukas Dion
  • László Kiss
  • Patrice Chartrand
  • Gilles Dufour
  • François Laflamme
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Current efficiency is an important indicator used in the aluminum reduction technology. Values for this indicator are usually determined among potlines and they are not representative of the fluctuations that may occur in a single electrolysis cell. To measure or calculate an accurate value on a monthly basis would be a very interesting tool for process technicians and engineers to help regulate and analyse the performance of the pot. The potential use of the sodium content of aluminum as an indicator of current efficiency is investigated. Many authors discussed its role and indicated a possible correlation with the current efficiency. Aluminerie Alouette Inc. performed some univariate statistical analysis to confirm this correlation on a potline scale. Furthermore, multivariate analysis is performed to strengthen the correlation according to other indicators. Results from these analyses and the possible implementation as an indicator is discussed in this paper.


aluminum current efficiency sodium multivariate analysis prediction Aluminerie Alouette Inc. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kvande, H., Chapter 0: Course on industrial aluminium electrolysis, 2012: Chicoutimi, Qc, Canada.Google Scholar
  2. 2.
    Fredrickson, G.L., Light Metals, 2003: p. 299–306.Google Scholar
  3. 3.
    Fredrickson, G.L., Light Metals, 2003: p. 307–314.Google Scholar
  4. 4.
    Tabereaux, A., in The international Harold A. Oye Symposium, 1995: Trondheim, Norway, p. 115–127.Google Scholar
  5. 5.
    Tabereaux, A.T., Light Metals, W.R. Hale, Editor 1996. p. 319–326.Google Scholar
  6. 6.
    Polyakov, P.V., et al, Tsvetnye metally, 1993. 34(3): p. 29–31.Google Scholar
  7. 7.
    Thonstad, J., et al., Light Metals, 2001.Google Scholar
  8. 8.
    Solheim, A., Light Metals, 2002. p. 225–230.Google Scholar
  9. 9.
    Haupin, W.E., Light metals, 1997. p. 319–323.Google Scholar
  10. 10.
    Othman, I. and M. Ali, Light Metals, 1997. p. 411–415.Google Scholar
  11. 11.
    Danielik, V., P. Fellner, and J. Thonstad, Journal of Applied Electrochemistry, 1998. 28: p. 1265–1268.CrossRefGoogle Scholar
  12. 12.
    Fellner, P., et al., Electrochimica Acta, 2004. 49(9–10): p. 1505–1511.CrossRefGoogle Scholar
  13. 13.
    Keller, R., J.W. Burgman, and P.j. Sides, in Light Metals 1988. p. 629–631.Google Scholar
  14. 14.
    Sterten, A., P.A. Solli, and A. Solheim, in Al-Symposium 1995: Donovaly, Slovakia, p. 209–219.Google Scholar
  15. 15.
    Kent, J.H., Journal of Metals, 1970. 22(11): p. 30–36.Google Scholar
  16. 16.
    Tingle, W.H., J. Petit, and W.B. Frank, Aluminium, 1981. 57: p. 286–288.Google Scholar
  17. 17.
    Tarcy, G.P. and J. Sorensen, Light metals, 1991. p. 453–459.Google Scholar
  18. 18.
    Simoes, T., et al., Light metals, 2008. p. 361–368.Google Scholar
  19. 19.
    Liu, Z., et al, Light metals, 2012. p. 935–938.Google Scholar
  20. 20.
    Rolofs, B. and N. Wai-Poi, Light metals, 2000, p. 189–193.Google Scholar
  21. 21.
    Kurenkov, A., et al., Magnetohydrodynamics, 2004. 40(2): p. 203–212.Google Scholar
  22. 22.
    Saevarsdottir, G., et al., 10th australasian aluminium smelting technology conference, 2011: Launceston.Google Scholar
  23. 23.
    Sterten, A., P.A. Solli, and E. Skybakmoen, Journal of Applied Electrochemistry, 1998. 28: p. 781–789.CrossRefGoogle Scholar
  24. 24.
    STATSOFT, Statistica 9.0, 2009.Google Scholar
  25. 25.
    Dion, L., F. Laflamme, and D. Dube, 2012, Aluminerie Alouette inc. 17 pages. Rapport interneGoogle Scholar
  26. 26.
    Coursol, P., et al., Light metals, 2012. p. 591–595.Google Scholar
  27. 27.
    Achelis, S., L’analyse technique de A dZ. ed. Valor.Google Scholar
  28. 28.
    Welch, B. and A. Tabereaux, Fourth australasian aluminium smelter technology workshop, 1992.Google Scholar
  29. 29.
    Shin, D. and A.D. Sneyd, Light metals, 2000. p. 279–283.Google Scholar
  30. 30.
    Chabot, J. and B. Beaulieu, Profil de mégots, 2011, Aluminerie Alouette Inc. Rapport interneGoogle Scholar
  31. 31.
    Lindsay, S., Chapter 16: Course on industrial aluminium electrolysis 2012: Chicoutimi, Qc, Canada.Google Scholar
  32. 32.
    Dion, L., L. Kiss, and P. Coursol, 8th international conference on mechanical engineering, 2012, p. 72–82.Google Scholar
  33. 33.
    Elith, J., J.R. Leathwick, and T. Hastie, Journal on Animal Ecology, 2008. 77(4): p. 802–13.CrossRefGoogle Scholar
  34. 34.
    Biedler, P. and L. Banta, Light Metals 2003. p. 441–447.Google Scholar
  35. 35.
    Thonstad, J., et al., METSOC — Light metals and matrix composites, 2004: Hamilton, p. 595–602.Google Scholar
  36. 36.
    Thisted, E.W., 2003, Institutt for materialteknologi. p. XVI, 248 s. ill.Google Scholar
  37. 37.
    Schmidt-Hatting, W., R. Perruchaud, and J.E. Durgnat, Light metals 1986: New Orleans, p. 623–625.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Lukas Dion
    • 1
  • László Kiss
    • 1
  • Patrice Chartrand
    • 2
  • Gilles Dufour
    • 3
  • François Laflamme
    • 3
  1. 1.Université du Québec à ChicoutimiChicoutimiCanada
  2. 2.École PolytechniqueMontréalCanada
  3. 3.Aluminerie Alouette inc.Sept-ÎlesCanada

Personalised recommendations