Skip to main content

Sodium Content in Aluminum and Current Efficiency — Correlation through Multivariate Analysis

  • Chapter
Light Metals 2013

Abstract

Current efficiency is an important indicator used in the aluminum reduction technology. Values for this indicator are usually determined among potlines and they are not representative of the fluctuations that may occur in a single electrolysis cell. To measure or calculate an accurate value on a monthly basis would be a very interesting tool for process technicians and engineers to help regulate and analyse the performance of the pot. The potential use of the sodium content of aluminum as an indicator of current efficiency is investigated. Many authors discussed its role and indicated a possible correlation with the current efficiency. Aluminerie Alouette Inc. performed some univariate statistical analysis to confirm this correlation on a potline scale. Furthermore, multivariate analysis is performed to strengthen the correlation according to other indicators. Results from these analyses and the possible implementation as an indicator is discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kvande, H., Chapter 0: Course on industrial aluminium electrolysis, 2012: Chicoutimi, Qc, Canada.

    Google Scholar 

  2. Fredrickson, G.L., Light Metals, 2003: p. 299–306.

    Google Scholar 

  3. Fredrickson, G.L., Light Metals, 2003: p. 307–314.

    Google Scholar 

  4. Tabereaux, A., in The international Harold A. Oye Symposium, 1995: Trondheim, Norway, p. 115–127.

    Google Scholar 

  5. Tabereaux, A.T., Light Metals, W.R. Hale, Editor 1996. p. 319–326.

    Google Scholar 

  6. Polyakov, P.V., et al, Tsvetnye metally, 1993. 34(3): p. 29–31.

    Google Scholar 

  7. Thonstad, J., et al., Light Metals, 2001.

    Google Scholar 

  8. Solheim, A., Light Metals, 2002. p. 225–230.

    Google Scholar 

  9. Haupin, W.E., Light metals, 1997. p. 319–323.

    Google Scholar 

  10. Othman, I. and M. Ali, Light Metals, 1997. p. 411–415.

    Google Scholar 

  11. Danielik, V., P. Fellner, and J. Thonstad, Journal of Applied Electrochemistry, 1998. 28: p. 1265–1268.

    Article  Google Scholar 

  12. Fellner, P., et al., Electrochimica Acta, 2004. 49(9–10): p. 1505–1511.

    Article  Google Scholar 

  13. Keller, R., J.W. Burgman, and P.j. Sides, in Light Metals 1988. p. 629–631.

    Google Scholar 

  14. Sterten, A., P.A. Solli, and A. Solheim, in Al-Symposium 1995: Donovaly, Slovakia, p. 209–219.

    Google Scholar 

  15. Kent, J.H., Journal of Metals, 1970. 22(11): p. 30–36.

    Google Scholar 

  16. Tingle, W.H., J. Petit, and W.B. Frank, Aluminium, 1981. 57: p. 286–288.

    Google Scholar 

  17. Tarcy, G.P. and J. Sorensen, Light metals, 1991. p. 453–459.

    Google Scholar 

  18. Simoes, T., et al., Light metals, 2008. p. 361–368.

    Google Scholar 

  19. Liu, Z., et al, Light metals, 2012. p. 935–938.

    Google Scholar 

  20. Rolofs, B. and N. Wai-Poi, Light metals, 2000, p. 189–193.

    Google Scholar 

  21. Kurenkov, A., et al., Magnetohydrodynamics, 2004. 40(2): p. 203–212.

    Google Scholar 

  22. Saevarsdottir, G., et al., 10th australasian aluminium smelting technology conference, 2011: Launceston.

    Google Scholar 

  23. Sterten, A., P.A. Solli, and E. Skybakmoen, Journal of Applied Electrochemistry, 1998. 28: p. 781–789.

    Article  Google Scholar 

  24. STATSOFT, Statistica 9.0, 2009.

    Google Scholar 

  25. Dion, L., F. Laflamme, and D. Dube, 2012, Aluminerie Alouette inc. 17 pages. Rapport interne

    Google Scholar 

  26. Coursol, P., et al., Light metals, 2012. p. 591–595.

    Google Scholar 

  27. Achelis, S., L’analyse technique de A dZ. ed. Valor.

    Google Scholar 

  28. Welch, B. and A. Tabereaux, Fourth australasian aluminium smelter technology workshop, 1992.

    Google Scholar 

  29. Shin, D. and A.D. Sneyd, Light metals, 2000. p. 279–283.

    Google Scholar 

  30. Chabot, J. and B. Beaulieu, Profil de mégots, 2011, Aluminerie Alouette Inc. Rapport interne

    Google Scholar 

  31. Lindsay, S., Chapter 16: Course on industrial aluminium electrolysis 2012: Chicoutimi, Qc, Canada.

    Google Scholar 

  32. Dion, L., L. Kiss, and P. Coursol, 8th international conference on mechanical engineering, 2012, p. 72–82.

    Google Scholar 

  33. Elith, J., J.R. Leathwick, and T. Hastie, Journal on Animal Ecology, 2008. 77(4): p. 802–13.

    Article  Google Scholar 

  34. Biedler, P. and L. Banta, Light Metals 2003. p. 441–447.

    Google Scholar 

  35. Thonstad, J., et al., METSOC — Light metals and matrix composites, 2004: Hamilton, p. 595–602.

    Google Scholar 

  36. Thisted, E.W., 2003, Institutt for materialteknologi. p. XVI, 248 s. ill.

    Google Scholar 

  37. Schmidt-Hatting, W., R. Perruchaud, and J.E. Durgnat, Light metals 1986: New Orleans, p. 623–625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Barry A. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Dion, L., Kiss, L., Chartrand, P., Dufour, G., Laflamme, F. (2016). Sodium Content in Aluminum and Current Efficiency — Correlation through Multivariate Analysis. In: Sadler, B.A. (eds) Light Metals 2013. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-65136-1_127

Download citation

Publish with us

Policies and ethics