Skip to main content

On the Importance of Modeling 3D Shrinkage Cavities for the Prediction of Macrosegregation in Steel Ingots

  • Chapter
CFD Modeling and Simulation in Materials Processing 2016

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

With this work an existing 3-phase mixed columnar-equiaxed solidification model is extend to treat the formation of shrinkage cavity by including an additional phase. In the previous model a mixed columnar and equiaxed solidification approach that considers the multiphase transport phenomena (mass, momentum, species and enthalpy) is proposed to calculate the as-cast structure including columnar-to-equiaxed transition (CET) and formation of macrosegregation. In order to incorporate the formation of shrinkage cavity, a supplementary phase, i.e. gas phase or covering liquid slag phase, is considered in addition to the previously introduced 3 phases (parent melt, solidifying columnar dendrite trunks and equiaxed grains). No mass and species transfer between the new phase and the other 3 phases is necessary, but momentum and energy transfer is of critical importance for the formation of the shrinkage cavity and with that the flow and formation of macrosegregation would be influenced. Some modelling approaches for the momentum and energy transfer are suggested and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore J. and Shah N.: Int. Metals Rev., 28 (1983), p. 338–356.

    Google Scholar 

  2. Myama E., Uchida T., Morikawa M. and Saito S.: AFS Cast Met. Res. J., 7 (1982), p. 52–63.

    Google Scholar 

  3. Carlson K. D., and Beckermann C.: Metall. Mater. Trans., 40A (2009), p. 163–175.

    Article  Google Scholar 

  4. Nastac L. and Marsden K.: Int. J. Cast Metal Res., 26 (2013), p. 374–382.

    Article  Google Scholar 

  5. Wu M., Schädlich-Stubenrauch J., Augthun M., Sahm P. and Spiekermann H.: Dent. Mater., 14 (1998), p. 321–328.

    Article  Google Scholar 

  6. Ludwig A., Gruber-Pretzler M., Mayer F., Ishmurzin A. and Wu M.: Mater. Sci. Eng. A, 413–414 (2005), p. 485–489.

    Article  Google Scholar 

  7. Wu M., Könözsy L., Ludwig A., Schützenhöfer W. and Tanzer R.: Steel Res. Int., 79 (2008), p. 637–644.

    Article  Google Scholar 

  8. Wu M., Li J., Ludwig A. and Kharicha A: Comp. Mater. Sci., 79 (2013), p. 830–840.

    Article  Google Scholar 

  9. Wu M., Li J., Ludwig A. and Kharicha A: Comp. Mater. Sci., 92 (2014), p. 267–285.

    Article  Google Scholar 

  10. Wu M. and Ludwig A: Metall. Mater. Trans., 37A (2006), p.1613–1624.

    Article  Google Scholar 

  11. Wang T., Yao S., Zhang X., Jin J., Wu M., Ludwig A., Pustal B. and Bührig-Polaczek A.: Jinshu Xuebao/Acta Metall. Sinica, 42 (2006), p.584–590.

    Google Scholar 

  12. Ranz W. and Marshall W.: Chem. Eng. Prog., 48 (1952), p.141–146.

    Google Scholar 

  13. ANSYS FLUENT 12.0 User’s Guide, Copyright © 2009 by ANSYS, Inc, April 2009.

    Google Scholar 

  14. Mayer F., Wu M. and Ludwig A: Steel Res. Int., 81 (2010), p. 660–667.

    Article  Google Scholar 

  15. Wu M., Domitner J. and Ludwig A.: Metall. Mater. Trans. A, 43 (2012), p. 945–963.

    Article  Google Scholar 

  16. Iron Steel Inst: Report on the heterogeneity of steel ingots, J. Iron Steel Inst., 103 (1926), p.39–151.

    Google Scholar 

  17. Li J., Wu M., Kharicha A. and Ludwig A.: Int. J. Heat and Mass Transfer, 72 (2014), p. 668–679.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Ludwig, A., Wu, M., Kharicha, A. (2016). On the Importance of Modeling 3D Shrinkage Cavities for the Prediction of Macrosegregation in Steel Ingots. In: Nastac, L., et al. CFD Modeling and Simulation in Materials Processing 2016. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-65133-0_1

Download citation

Publish with us

Policies and ethics