Skip to main content

The Sound Environments and Auditory Perceptions of the Fetus and Preterm Newborn

  • Chapter
  • First Online:

Abstract

This critical review of the literature of the sound environment and auditory perception of the fetus and preterm newborn considers classic and contemporary studies.

This chapter aims to examine animal studies as a starting point and stimulus for knowledge of fetal and preterm infant auditory perception and behavior development. It also appraises listening conditions in a newborn intensive care unit (NICU) as these affect perception of the mother’s voice. Practices intended to augment fetal and preterm listening environments are considered. An understanding of sound measurement is intended to improve the validity of research and effectiveness of clinical practices regarding exposure to mother’s voice.

The chapter concludes that the fetus perceives its environment as quiet but complex and that the mother’s voice is a prominent signal but heartbeat sounds are not. Strong vibroacoustic stimulation of no benefit and possible harm includes some workplaces and sports, transport vehicles, and speakers attached to the belly or inserted in the vagina.

Although ambient sound equivalent levels may be low and hard, reverberant surfaces in old and new NICUs produce startling, distracting, and disturbing individual sounds for infants and adults. The amount of auditory experience “good enough” for perception and language development is unknown. Perception of frequency alone is a minor component of language competence. A holistic view of the infant suggests that “sound deprivation” may be a misnomer if some live speech and singing are available. Skin-to-skin holding with speech provides an effective basis for language development in the NICU environment.

This is a preview of subscription content, log in via an institution.

References

  • Abrams, R. M., & Gerhardt, K. J. (2000). The acoustic environment and physiological responses of the fetus. Journal of Perinatology, 20(8 part 2), S31–S36. doi:10.1038/sp.jp.7200445

    Article  PubMed  Google Scholar 

  • Abrams, R. M., Hutchinson, A. A., Gerhardt, K. J., Evans, S. L., & Pendergast, J. (1987). Local cerebral glucost utilization in fetal sheep exposed to noise. American Journal of Obstetrics and Gynecology, 157(2), 456–460.

    Article  PubMed  Google Scholar 

  • Als, H., Butler, S., & McAnulty, G. (2005). Assessment of preterm infants’ behavior (APIB): Furthering the understanding and measurement of neurodevelopmental competence in preterm and full-term infants. Mental Retardation and Developmental Disabilities Research Reviews, 11, 94–102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Als, H., & McAnulty, G. B. (2014). Newborn individualized developmental care and assessment program with Kangaroo Mother Care (KMC): Comprehensive care for preterm infants. Current Womans Health Review, 7(3), 288–301. doi:10.2174/157340411796355216

    Article  Google Scholar 

  • Appler, J. M., & Goodrich, L. V. (2011). Connecting the ear to the brain: Molecular mechanisms and the auditory circuit assembly. Progress in Neurobiology, 93, 488–508. doi:10.1016/j-pneurobio.2011.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Armitage, S. E., Baldwin, B. A., & Vince, M. A. (1980). The fetal sound environment of sheep. Science, 208(4448), 1173–1174. www.ncbi.nim.nih.gov/pubmed/7375927

    Article  PubMed  Google Scholar 

  • Babypod. www.Babypod.net/en/babypod/. Accessed October 21, 2016.

  • Bench, J. R. (1968). Sound transmission to the human foetus through the maternal abdominal wall. Journal of Genetic Psychology, 113, 85–87.

    Article  PubMed  Google Scholar 

  • Brazelton, T.B., Nugent J.K., Lester B.M., Osofsky, J.D. (Ed). (1987). Neonatal behavioral assessment scale. Handbook of infant development, 2nd ed., (pp. 780–817). Oxford, England: Wiley., xix, 1391 pp.

    Google Scholar 

  • Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498–502.

    Article  PubMed  Google Scholar 

  • Dearn, T., & Shoemark, H. (2014). The effect of maternal presence on premature infant response to recorded music. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 43, 341–350. doi:10.1111/1552-6909.12303

    Article  PubMed  Google Scholar 

  • DeCasper, A. J., Fifer, W. P. 1980 Of human bonding: Newborns prefer their mothers’ voices. Science. 208(4448). 1174–1176. New Series.

    Article  PubMed  Google Scholar 

  • DeCasper, A. J., & Prescott, P. (1984). Lateralized processes constrain auditory reinforcement in human newborns. Hearing Research, 255, 135–141.

    Article  Google Scholar 

  • DeCasper, A. J., & Singafoos, A. D. (1983). Intrauterine heartbeat: A potent reinforcer for newborns. Infant Behavior & Development, 6, 19–25.

    Article  Google Scholar 

  • Doheny, L., Hurwitz, S., Insoft, R., Ringer, S., & Lahav, A. (2012). Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely premature infants. The Journal of Fetal and Neonatal Medicine, 25(9), 1591–1594. doi:10.3109/14767058.2011.648237

    Article  Google Scholar 

  • Gagnon, R. (1989). Stimulation of human fetuses with sound and vibration. Seminars in Perinatology, 13, 393–402.

    PubMed  Google Scholar 

  • Gerhardt, K. J., & Abrams, R. M. (2000). Fetal exposures to sound and vibroacoustic stimulation. Journal of Perinatology, 20(8 Pt 2), S21–S30. www.ncbi.nlm.nih.gov/…/11190697

    Article  PubMed  Google Scholar 

  • Gerhardt, K. J., Otto, R., Abrams, R. M., Colle, J. J., Burchfield, D. J., & Peters, A. J. M. (1992). Cochlear microphonics recorded from fetal and newborn sheep. American Journal of Otolaryngology, 13(4), 226–233.

    Article  PubMed  Google Scholar 

  • Gray, L. (1991). Development of a frequency dimension in chickens (Gallus gallus). Journal of Comparative Psychology, 105(1), 85–88.

    Article  PubMed  Google Scholar 

  • Gray, L. C. (2000). Properties of sound. Journal of Perinatology, 20(8 part 2), S6–S11.

    Article  PubMed  Google Scholar 

  • Gray, L. C., & Philbin, M. K. (2000). Measuring sound in hospital nurseries. Journal of Perinatology, 20(8 part 2), 100–104.

    Article  Google Scholar 

  • Gray, L. C., & Philbin, M. K. (2004). Effects of the neonatal intensive care unit on auditory attention and distraction. Clinics in Perinatology, 31, 243–260. doi:10.1016/j.clp.2004.04.013

    Article  PubMed  Google Scholar 

  • Griffiths, S. K., Brown, W. S., Gerhardt, K. J., Abrams, R. M., & Morris, J. R. (1994). The perception of speech sounds recorded within the uterus of a pregnant sheep. The Journal of the Acoustical Society of America, 96, 2055–2063.

    Article  PubMed  Google Scholar 

  • Grimwade, J. C., Walker, D. W., & Wood, C. (1970). Sensory stimulation of the human fetus. Australian Journal of Mental Retardation, 2, 63–64.

    Article  Google Scholar 

  • Harshaw, C., & Lickliter, R. (2011). Biased embryos: Prenatal experience and the malleability of species-typical auditory preferences. Developmental Psychobiology, 53, 291–302.

    Article  PubMed  Google Scholar 

  • Hess, E. H. (1959). Imprinting. Science, 130, 133–141.

    Article  PubMed  Google Scholar 

  • Kuhn, T. S. (2012) The structure of scientific revolutions: 50th anniversary edition. 4th ed. Chicago, IL: University of Chicago Press. 264. ISBN – 13 978-0226458083.

    Book  Google Scholar 

  • Lahav, A. (2015). Questionable sound exposure outside the womb: Frequency analysis of environmental noise in the intensive care unit. Acta Pædiatrica, 104(1), e14–e19. doi:10.1111/apa 12816 Epub 2014 Oct 27

    Article  PubMed  Google Scholar 

  • Lahav, A., & Skoe, E. (2014). An acoustic gap between the NICU and womb: A potential risk for compromised neuroplasticity of the auditory system in preterm infants. Frontiers in Neuroscience, 8(381), 1–7. doi:10.3389/fnins.2014.00381

    Google Scholar 

  • Lester, B.M., Tronick, E.Z., Brazelton, T.B. (2004) The neonatal intensive care unit network neurobehavioral scale procedures. Pediatrics. 113(3 Pt. 2), 641-667. PMID: 14993524.

    PubMed  Google Scholar 

  • Lickliter, R., & Bahrick, L. E. (2000). The development of intersensory perception: Advantages of a comparative, convergent operations approach. Psychology Bulletin, 126, 260–280.

    Article  Google Scholar 

  • McMahon, E., Wintermark, P., & Lahav, A. (2012). Auditory brain development in premature infants: The importance of early experience. Annals of the New York Academy of Sciences, 1252, 17–24. doi:10.1111/j.1749-6632.2012.0645.X

    Article  PubMed  Google Scholar 

  • Moltz, H. (1960). Imprinting: Empirical basis and theoretical significance. Psychological Bulletin, 57, 291–314.

    Article  PubMed  Google Scholar 

  • Moon, C., Lagercrantz, H., & Kuhl, P. K. (2013). Language experienced in utero affects vowel perception after birth: A two-country study. Acta Pediatrica, 102, 156–160.

    Article  Google Scholar 

  • National Institute for Occupational Safety and Health. Reproductive health and the workplace. www.cdc.gov/niosh/docs/99-104/pdfs/99-104.pdf. Accessed October 10, 2016a.

  • National Institute for Occupational Safety and Health. Workplace safety and health topics > Noise and hearing loss prevention > Publications and tools > Sound meter. URL: www.cdc.gov/niosh /…/noisemeter. Accessed October 10, 2016b.

  • Panagiotidis, J., & Lahav, A. (2010). Simulation of prenatal maternal sounds in NICU incubators: A pilot safety and feasibility study. The Journal of Maternal-Fetal and Neonatal Medicine, 23(S3), 106–109. doi:10.3109/14767058 2010. 512185

    Article  PubMed  Google Scholar 

  • Philbin, M. K., Ballweg, D. D., & Gray, L. (1994). The effect of an intensive care unit sound environment on the development of habituation in healthy avian neonates. Developmental Psychobiology, 27, 11–21.

    Article  PubMed  Google Scholar 

  • Philbin, M. K., & Gray, L. (2001). Changing levels of quiet in an intensive care nursery. Journal of Perinatology, 22, 455–460.

    Article  Google Scholar 

  • Philbin, M. K., Lickliter, R., & Graven, S. N. (2000). Sensory experience and the developing organism: A history of ideas and view to the future. Journal of Perinatology, 20, S2–S5.

    Article  PubMed  Google Scholar 

  • Philbin, M. K., Robertson, A. F., & Hall, J. W., III. (1999). Recommended permissible noise criteria for occupied, newly constructed or renovated hospital nurseries. Journal of Perinatology, 19, 559–563.

    Article  PubMed  Google Scholar 

  • Philbin, M. K., Taber, K. H., & Hayman, L. A. (1996). Preliminary report: Changes in vital signs of term newborns during magnetic resonance imaging. American Journal of Neuroradiology, 17, 1033–1036.

    PubMed  Google Scholar 

  • Querleu, D., Verspy, X. R., & Vervoort, P. (1988). La transmission intra-amniotique des voix humaines. Review. Francais Gynécologie and Obstétrics, 83(1), 43–50.

    Google Scholar 

  • Rabinowitz, N. C., Willmore, B. D., Schnupp, J. W., & King, A. J. (2011). Contrast gain in auditory cortex. Neuron, 70, 1178–1191. doi:10.1016/j. Neuron 2011.04.030

    Article  PubMed  PubMed Central  Google Scholar 

  • Rand, K., Lahav, A. (2014) Impact of the NICU environment on language deprivation in preterm infants. Acta Pædiatrica. 10(3):243–248. doi 10.1111/apa-12481 Epub 2013 Nov 23 PMID 24164604

    Article  Google Scholar 

  • Richards, D. S., Frentzen, B., Gerhardt, K. J., McCann, M. E., & Abrams, R. A. (1992). Sound levels in the human uterus. Obstetrics and Gynecology, 89(2), 186–190.

    Google Scholar 

  • Rubel, E. W., Lippe, W. R., & Ryals, B. M. (1984). Development of the place principle. The Annals of Otology, Rhinology, and Laryngology, 93(6), 609–615.

    Article  PubMed  Google Scholar 

  • Salk, L. (1960). The effects of the normal heartbeat sound on the behavior of the newborn infant; implications for mental health. World Mental Health, 12, 168–175.

    Google Scholar 

  • Salk, L. (1962, April) Mother’s heartbeat as an imprinting stimulus. Transactions of the New York Academy of Sciences, 10, 753–763. PMID: 13991116.

    Google Scholar 

  • Shahidullah, S., & Hepper, P. G. (1994). Frequency discrimination by the fetus. Early Human Development, 36, 13–26.

    Article  PubMed  Google Scholar 

  • Smith, S. W. (2013). Scientist and Engineer’s guide to digital signal processing (p. 640). New York:Springer. ISBN-13:978-0966017632. ISBN-10:09660117633.

    Google Scholar 

  • Spence, M., & DeCasper, A. (1987). Prenatal experience with low-frequency maternal-voice sounds influence perception of maternal voice samples. Infant Behavior & Development, 16, 133–142.

    Article  Google Scholar 

  • Ullal-Gupta, S., Van den Bosch der Nederlanden, C. M., Tichko, P., Lahav, A., & Hannon, E. E. (2013). Linking prenatal experience to the emerging musical mind. Frontiers in Systems Neuroscience, 7, 48. doi:10.3389/fnsys.2013.00048

    Article  PubMed  PubMed Central  Google Scholar 

  • White, J. D., Smith, J. A., & Shepley, M. M. (2013). Recommended standards for newborn ICU design. Journal of Perinatology, 33, S2–16. doi:10.1038/jp.2013.10

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Jack B. Evans, P. E., for guidance regarding the acoustic environment and sound level measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kathleen Philbin RN, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Philbin, M.K. (2017). The Sound Environments and Auditory Perceptions of the Fetus and Preterm Newborn. In: Filippa, M., Kuhn, P., Westrup, B. (eds) Early Vocal Contact and Preterm Infant Brain Development . Springer, Cham. https://doi.org/10.1007/978-3-319-65077-7_6

Download citation

Publish with us

Policies and ethics